Phase Behavior of Carbon Dioxide

Phase Behavior of Carbon Dioxide

PHASE BEHAVIOR OF CARBON DIOXIDE AND OXYGEN IN THE IONIC LIQUID 1-HEXYL-3-METHYLIMIDAZOLIUM BIS(TRIFLUOROMETHYLSULFONYL)IMIDE A Thesis Submitted to the Graduate School of the University of Notre Dame in Partial Fulfillment of the Requirements for the Degree of Master of Science in Chemical Engineering by Katherine E. Wilbanks, B.Ch.E. Joan Brennecke, Director Graduate Program in Chemical and Biomolecular Engineering Notre Dame, Indiana April 2007 PHASE BEHAVIOR OF CARBON DIOXIDE AND OXYGEN IN THE IONIC LIQUID 1-HEXYL-3-METHYLIMIDAZOLIUM BIS(TRIFLUOROMETHYLSULFONYL)IMIDE Abstract By Katherine E. Wilbanks The phase behavior of carbon dioxide and oxygen mixtures in the ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [hmim][Tf2N], at (40 ± 0.5)˚C was investigated. Experiments were carried out in a fixed volume high pressure view cell with the vapor phase being sampled and analyzed using a gas chromatograph. Solubility data was determined by difference. Measurements were carried out at equilibrium pressures from 18.7 to 72.5 bar and feed compositions of 25, 35, and 50 mole percent oxygen with the balance being carbon dioxide. Noticeable enhancement was seen at pressures greater than 30 bar and was quantified by calculating enhancement factors and showing ternary diagrams. These results were compared with those of the same system at a lower temperature and carbon dioxide-expanded organic solvents. For my mother, who gave me roots and wings. ii TABLE OF CONTENTS List of Figures........................................................................................ v List of Tables ...................................................................................... viiii List of Symbols ..................................................................................... ix Acknowledgements ...............................................................................xii Chapter 1: Introduction and Background.................................................1 1.1 Introduction............................................................................1 1.2 Ionic Liquids as Green Engineering Liquids................................2 1.3 Challenges facing Ionic Liquids as Green Engineering Fluids ......5 1.4 Objective of this work.............................................................7 1.5 Background ............................................................................7 1.5.1 Motivation ......................................................................7 1.5.2 Pure Gas Solubility Data ..................................................9 1.5.3 Mixed Gas Solubility Background....................................14 Chapter 2: Theory ................................................................................21 2.1 Introduction..........................................................................21 2.2 Phase Equilibrium in One-Component Systems .......................21 2.3 Phase Equilibrium in Mixtures.................................................24 2.4 Equation of State Selection...................................................27 2.5 Calculations ..........................................................................30 Chapter 3: Experimental Methods .........................................................33 3.1 Apparatus.............................................................................33 3.1.1 Experimental Configuration............................................33 3.1.2 Gas Chromatograph Configuration .................................36 3.2 Materials...............................................................................36 3.2.1 Gases............................................................................36 3.2.2 Ionic Liquid [hmim][Tf2N] ..............................................37 iii 3.3 Procedure.............................................................................39 3.3.1 GC Calibration ...............................................................39 3.3.2 Liquid Volume Calibration ..............................................40 3.3.3 Combined Cell and Line Volume Calibration ....................41 3.3.4 Oxygen-Carbon Dioxide-[hmim][Tf2N] Ternary System...41 Chapter 4: Results & Discussion............................................................43 4.1 Introduction..........................................................................43 4.2 Enhancement Factors ...........................................................43 4.3 Equal Fugacity Plots..............................................................51 4.4 Ternary Diagrams..................................................................54 Chapter 5: Conclustions........................................................................67 5.1 Conclusions ..........................................................................67 5.2 Future Work .........................................................................68 Appendix A: Interpolating Oxygen Solubility Data ..................................70 Appendix B: Procedure for Mixed Gas Solubility Measurements...............77 Appendix C: Gas Chromatograph Method Settings .................................81 Appendix D: Error Analysis....................................................................84 Appendix E: Experimental Data shown in Fugacity Plots .........................90 Bibliography .........................................................................................94 iv LIST OF FIGURES Figure 1.1. Pure carbon dioxide solubility data collected in the static stoichiometric apparatus, IGA microbalance, and Rubotherm suspension microbalance at 10ºC, 25ºC, 40ºC, 50ºC and 60ºC. ....12 Figure 1.2. Pure oxygen solubility data in [hmim][Tf2N] at 10ºC, 25ºC, and 50ºC taken in the IGA microbalance.............................................13 Figure 1.3. Solubility of carbon dixoide in [hmim][Tf2N] in the presence of oxygen with a feed gas composition of oxygen/carbon dioxide = 50/50 [52]. ...............................................................................17 Figure 1.4. Solubility of oxygen in [hmim][Tf2N] in the presence of carbon dioxide with a feed gas composition of oxygen/carbon dioxide = 50/50 [52]. ...............................................................................17 Figure 1.5. Phase diagram for nitrogen-carbon dioxide-ethane at 220 K and 4 MPa [53]. Data points represent experimental points from previous experiments [54]. .........................................................19 Figure 1.6. Carbon dioxide-oxygen-methanol system at 40˚C and 30 bar shows little oxygen solubility enhancement [50]..........................20 Figure 3.1. Detailed view of the fixed volume view cell. .........................35 Figure 3.2. The structure of the ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [hmim][Tf2N]. ..........................38 Figure 4.1. Solubility of carbon dioxide in [hmim][Tf2N] as a function of o fugacity at (40 ± 0.5) C. ............................................................52 Figure 4.2. Solubility of oxygen in [hmim][Tf2N] as a function of fugacity at (40 ± 0.5)oC...........................................................................53 v Figure 4.3. CO2 (1) – O2 (2) – [hmim][Tf2N] at (20 ± 2) bar and (40 ± 0.5)˚C........................................................................................56 Figure 4.4. CO2 (1) – O2 (2) – [hmim][Tf2N] at (30 ± 4) bar and (40 ± 0.5)˚C........................................................................................57 Figure 4.5. CO2 (1) – O2 (2) – [hmim][Tf2N] at (40 ± 3) bar and (40 ± 0.5)˚C........................................................................................58 Figure 4.6. CO2 (1) – O2 (2) – [hmim][Tf2N] at (50 ± 3) bar and (40 ± 0.5)˚C........................................................................................59 Figure 4.7. CO2 (1) – O2 (2) – [hmim][Tf2N] at (60 ± 5) bar and (40 ± 0.5)˚C........................................................................................60 Figure 4.8. CO2 (1) – O2 (2) – [hmim][Tf2N] at (70 ± 2) bar and (40 ± 0.5)˚C........................................................................................61 Figure 4.9. CO2 (1) – O2 (2) – [hmim][Tf2N] at (40 ± 0.5)˚C and pressures from 20 - 70 bar for a 25 mole % O2 feed with the balance being CO2. ......................................................................62 Figure 4.10. CO2 (1) – O2 (2) – [hmim][Tf2N] at (40 ± 0.5)˚C and pressures from 20 - 70 bar for a 35 mole % O2 feed with the balance being CO2 .......................................................................63 Figure 4.11. CO2 (1) – O2 (2) – [hmim][Tf2N] at (40 ± 0.5)˚C and pressures from 20 - 70 bar for a 50 mole % O2 feed with the balance being CO2. ......................................................................64 Figure 4.12. Ternary phase behavior for CO2 (1)- O2 (2)- solvent (3) at (30 ± 4) bar and (40 ± 0.5)˚C where the organic solvents are acetonitrile and methanol and the IL is [hmim][Tf2N]. ..................65 Figure 4.13. Ternary phase behavior for CO2 (1)- O2 (2)- solvent (3) at (50 ± 3) bar and (40 ± 0.5)˚C where the organic solvents are acetonitrile, acetone and methanol and the IL is [hmim][Tf2N]. ....66 Figure A.1. Solubility of pure oxygen in [hmim][Tf2N]. The experimental points at 10ºC, 25ºC, and 50ºC are shown...................................71 vi Figure A.2. The partial molar enthalpy of solution is the slope of ln H vs. 1 . The uncertainty in each data point is shown.............75

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    114 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us