Determination and Valuation of Recovery Risk in Credit-Risk Models

Determination and Valuation of Recovery Risk in Credit-Risk Models

Technische Universit¨atM¨unchen Zentrum Mathematik HVB-Stiftungsinstitut f¨urFinanzmathematik Determination and Valuation of Recovery Risk in Credit-Risk Models Stephan H¨ocht Vollst¨andigerAbdruck der von der Fakult¨atf¨urMathematik der Technischen Universit¨atM¨unchen zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation. Vorsitzende: Univ.-Prof. Claudia Czado, Ph.D. Pr¨uferder Dissertation: 1. Univ.-Prof. Dr. Rudi Zagst 2. Univ.-Prof. Dr. R¨udigerKiesel (Universit¨atDuisburg-Essen) 3. Prof. Luis A. Seco, Ph.D. (University of Toronto, Kanada) Die Dissertation wurde am 13.07.2009 bei der Technischen Universit¨atein- gereicht und durch die Fakult¨atf¨urMathematik am 04.11.2009 angenommen. ii iii Abstract This thesis is concerned with the modelling of recovery rates, their behaviour, and the valuation of recovery risk in credit-risk models. In particular, the characteristics and determinants of facility-level as well as aggregated recov- ery rates are examined on a unique Pan-European dataset. The empirical insights obtained from these investigations combined with stylized facts like the negative correlation between recovery rates and default rates are em- phasized to derive a consistent model for the valuation of single-name credit derivatives under stochastic recovery. Based on the class of intensity-based credit risk models, the model yields analytically tractable pricing formulas and in particular allows for the pricing of single-name credit derivatives with payoffs that are directly linked to the recovery rate at default, like recovery locks. Furthermore, stochastic recovery rates are also considered in the con- text of portfolio credit-risk modelling. Using nested Archimedean copulas the joint modelling of recovery rates and default rates in a portfolio of credit- risky assets is extended to a non-Gaussian dependence structure. Within this framework an efficient algorithm for sampling the loss process of the portfolio and pricing tranches of CDOs is presented. Finally, the well-known concept of base correlations is adapted to stochastic recoveries in a non-Gaussian setting. This modelling approach yields significantly flatter base correlation curves compared to the current market standard and therefore simplifies the pricing of non-standardized CDO tranches. iv v Zusammenfassung Diese Arbeit befasst sich mit der Modellierung von Erl¨osquoten und ihrem Verhalten sowie der Bewertung von Erl¨osquotenrisiken in Kreditrisikomodel- len. Basierend auf einer einzigartigen paneurop¨aischen Datenbank werden zun¨achst die Eigenschaften und bestimmenden Faktoren von Erl¨osquoten sowohl auf einem Einzelkredit- als auch auf einem aggregierten Level unter- sucht. Unter Verwendung der so gewonnenen empirischen Erkenntnisse, in Verbindung mit charakteristischen Eigenschaften wie der negativen Korre- lation von Ausfallraten und Erl¨osquoten, wird ein konsistentes Modell zur Bewertung von Kreditderivaten unter Berucksichtigung¨ stochastischer Erl¨os- quoten entwickelt. Aufbauend auf der Klasse der intensit¨ats-basierten Kredi- trisikomodelle liefert das betrachtete Modell analytisch gut handhabbare Be- wertungsformeln und erlaubt es insbesondere Kreditderivate zu bewerten, de- ren Auszahlungsprofil direkt von der Erl¨osquote bei Ausfall abh¨angt. Daruber¨ hinaus werden stochastische Erl¨osquoten auch im Kontext von Portfolio- kreditrisikomodellen betrachtet. Mittels hierarchischer archimedischer Ko- pulas wird die gemeinsame Modellierung von Ausfallraten und Erl¨osquoten in einem Portfolio ausfallbehafteter Anlagen auf nicht-Gaußsche Abh¨angig- keitsstrukturen erweitert. Im Rahmen dieses Modells wird ein effizienter Monte Carlo Algorithmus zur Bestimmung des Portfolioverlustprozesses und zur Bewertung der Tranchen eines CDO vorgestellt. Abschließend wird das marktubliche¨ Konzept der Basis-Korrelation auf den Fall stochastischer Erl¨os- quoten in einem nicht-Gaußschen Modellrahmen erweitert, wodurch, vergli- chen mit dem bisherigen Marktstandard, signifikant flachere Basis-Korrela- tions-Kurven erzielt werden und somit die Bewertung von nicht-standard- isierten CDO Tranchen erleichtert wird. vi vii Acknowledgements First of all, I would like to thank my supervisor Prof. Dr. Rudi Zagst for all his encouragement and support over the last years. He did not only provide the academically productive environment and gave me the opportunity to write this thesis and to present my research results at various conferences, he also significantly contributed to the success of this research project with his valuable advice and feedback in numerous discussions. Furthermore, I am very grateful to Prof. Dr. R¨udigerKiesel and to Prof. Luis Seco, Ph.D. for agreeing to serve as referees for this thesis. I would also like to thank Algorithmics Inc. for the financial support, which made the research cooperation between Algorithmics and the HVB-Institute for Mathematical Finance possible. I am particularly grateful to Colin Far- quhar and Stafford Perkins for initiating the research cooperation and answering practical questions. I would like to express my gratitude to my colleagues at the HVB-Institute for Mathematical Finance for the very pleasant working atmosphere, which made the last three years a highly enjoyable time. Special thanks are to Dr. Johannes Muhle-Karbe and Dr. Matthias Scherer for many helpful discus- sions. I am also indebted to my family for their constant encouragement through- out the last years. Last but by no means least, I thank my wife Sandy for her loving support in all situations. viii Contents 1 Introduction 1 1.1 Motivation . .1 1.2 Objectives and structure . .4 I Fundamentals 7 2 Mathematical preliminaries 9 2.1 Markov-switching models . .9 2.2 Intensity-based models . 13 2.3 Cauchy problem and Feynman-Kac representation . 19 2.4 Kalman filter . 31 2.5 Copulas . 34 3 Recovery rates in credit-risk modelling 45 3.1 Recovery rates and risks . 45 3.2 Measuring recovery rates . 47 3.3 Modelling recovery rates . 49 II Empirical analysis of recovery rates 63 4 Loan recovery determinants 65 4.1 The data . 68 4.2 Univariate analysis . 71 4.3 Multivariate analysis . 85 4.4 Recovery rate of collaterals . 86 5 Explaining aggregated recovery rates 91 5.1 The data . 92 5.2 Linear regression analysis . 95 5.3 Markov-switching analysis . 98 ix x CONTENTS 5.4 More detailed linear regression analysis . 103 III Pricing credit derivatives under stochastic re- covery 111 6 A hybrid model for pricing single-name credit derivatives under stochastic recovery 113 6.1 Modelling framework . 114 6.2 Pricing recovery dependent credit derivatives . 120 6.3 Parameter estimation, model calibration, and empirical results 132 6.4 Further applications . 144 7 Pricing distressed CDOs with stochastic recovery 149 7.1 Portfolio credit derivatives . 150 7.2 Model calibration and empirical results . 160 7.3 Parameter sensitivity and delta hedging . 166 7.4 An application to base correlations . 172 7.5 Risk measurement and management case study for a portfolio of credit-risky assets . 174 8 Summary and conclusion 181 A Univariate results from Chapter 5 185 B The four-factor hybrid defaultable bond pricing model of Antes et al. (2008) 189 C Detailed results from Chapter 7 193 C.1 Detailed calibration results . 193 C.2 Detailed base correlation results . 195 C.3 Detailed results for Example 7.4 . 197 Bibliography 209 List of Figures 223 List of Tables 226 Chapter 1 Introduction 1.1 Motivation Over the last decades a lot of progress has been made in the field of credit- risk modelling. While there has been a great variety of literature concerning the description, modelling, and prediction of default probabilities (going back to the seminal works of Beaver (1966), Altman (1968), and Merton (1974)), there have been only few studies concerning the description of recovery rates, their behaviour, and their determinants. Accordingly most credit-risk pricing models, both for single-name and portfolio credit derivatives, rather concen- trate on default-event risk or default-loss risk and neglect recovery risks. Caused by the rapid growth in the credit-derivatives market at the begin- ning of this century (see Figure 1.1) and the appearance of contingent claims on recoveries, e.g. fixed-recovery CDS, recovery locks, or recovery swaps, the sound modelling of recovery rates gained in importance lately, both for pric- ing purposes and portfolio risk management as well as for economic capital requirements. Particularly, the worldwide financial crisis starting in 2007 gave rise to a new discussion on recovery rates in the academic literature as well as among practitioners. While during the years of continuous economic growth and very low default rates from 2003 until mid 2007, the amount recovered after a potential default event was rather of theoretical interest, things changed when economic and credit conditions deteriorated due to the upcoming US sub-prime crisis. The increasing number of companies in financial distress, the large variation in realized recovery rates, and the high complexity of many credit derivatives led to a need for a better understanding of all variables involved in the loss process of a defaultable security. Table 1.1 shows the 2008 CDS credit event auction results from Creditex Group Inc.TM and Markit 1 2 CHAPTER 1. INTRODUCTION 60,000 50,000 40,000 30,000 20,000 10,000 0 1H01 2H01 1H02 2H02 1H03 2H03 1H04 2H04 1H05 2H05 1H06 2H06 1H07 2H07 1H08 Source: ISDA Market Survey Figure 1.1: CDS notional amount outstanding

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    239 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us