Computational Physics Dynamics of finite Quantum Systems Lecture Notes (WORK in PROGESS)

Computational Physics Dynamics of finite Quantum Systems Lecture Notes (WORK in PROGESS)

Computational physics Dynamics of finite quantum systems Lecture notes (WORK IN PROGESS) Armin Scrinzi Version 2014 (2011 contributions by Francesco Alaimo and Urs Waldmann) July 14, 2014 2 Contents 1 Introduction 7 1.1 Whereiscomputationalphysicsused?. ........... 7 1.2 Howarecomputersused? ............................. .... 9 1.3 Analyticalandcomputationalphysics . ........... 9 1.3.1 Skillsandtechniques . ..... 9 1.3.2 Computational and analytical techniques . ........... 10 1.3.3 Python........................................ 10 2 Single-particle stationary Schr¨odinger equation 11 2.1 The1-dHarmonicoscillatoronagrid. ......... 11 2.1.1 Finitedifferenceschemes . ...... 11 2.1.2 Mathematics ................................... 13 2.1.3 Higherorderfinitedifferenceschemes . ........ 16 2.2 Basissetrepresentations . ......... 16 2.2.1 Taylorseriesexpansion . ...... 16 2.2.2 Expansionintogeneralpolynomials . ......... 18 2.2.3 Orthogonal polynomials, special case: Legendre polynomials .......... 20 2.2.4 General properties of orthogonal polynomials . ............. 22 2.2.5 Objectorientedprogramming . ...... 24 2.2.6 Objects in Python: class for orthogonal polynomials . .............. 25 2.3 Rayleigh-Ritzvariationalprinciple. .............. 27 2.4 Boundaryconditions .............................. ...... 28 2.4.1 Implementation of Dirichlet boundary conditions . ............. 30 2.5 Managingyourcodes:Git . ...... 31 2.6 Howtosolvetheeigenvalueproblem . ........ 32 2.6.1 Powermethod................................... 33 2.6.2 Operations count, scaling of an algorithm, sparse matrices ........... 33 2.6.3 Krylovsubspace................................ ... 36 2.6.4 Listofalgorithmsforeigenproblems. .......... 37 2.7 Linear system solving — the LU decomposition . ........... 39 2.7.1 Timing of your code: how bad is N 3?....................... 41 2.8 Localbasissets .................................. ..... 41 2.8.1 Comparisonbasissetsvs.gridmethods . ......... 41 3 2.8.2 Localbasissets—finiteelements . ....... 42 2.8.3 Technicalremark: block-matrices . ......... 45 2.8.4 ImplementationoftheFEM . .... 47 2.8.5 The“BasisFunction”object . ...... 48 2.8.6 Localityvs. orthogonality . ....... 49 2.8.7 Other local basis functions: B-splines, wavelets . ............... 49 2.8.8 Comparison FEM (or other local basis functions) with FD ........... 51 2.8.9 DVR - “Discrete Variable Representations”. .......... 53 2.9 Higher(two-)dimensionalproblems . .......... 55 2.9.1 Tensorproduct ................................. .. 55 2.9.2 Polarcoordinatesin2dimensions . ........ 56 2.9.3 Anatominexternalfields . ... 58 2.9.4 Softskills: inputandoutput . ....... 60 2.9.5 More general potentials - integrations in 1 and more dimensions . 61 2.9.6 Recursivealgorithms . ..... 62 2.9.7 1d“Helium”atom ................................. 64 3 2-particle systems 67 3.1 Exponentialgrowthofproblemsize . .......... 67 3.2 2 interacting particles in a harmonic potential . ............... 68 3.3 Helium........................................... 68 3.3.1 Symmetries .................................... 72 3.3.2 Implementation ................................ ... 73 3.3.3 Perimetriccoordinates . ...... 81 3.3.4 He in ~r1, ~r2 coordinates (independent particle coordinates) . ... 81 3.3.5 Multipole expansions: tensor product approximations.............. 85 3.3.6 Lowrankapproximation . .... 86 3.3.7 Implementation - managing the complexity . .......... 87 3.4 Mathemagics: complexscaling . ......... 89 3.4.1 Hatominastaticelectricfield . ...... 89 3.4.2 Realscalingofthecoordinates. ........ 90 3.4.3 Complexscalingofthecoordinates . ........ 91 3.4.4 DoublyexcitedstatesofHelium . ...... 92 3.4.5 Energy shifts and decay of an atom in a static electric field........... 93 4 The time-dependent Schr¨odinger equation 95 4.1 Discretization .................................. ...... 96 4.2 SolvingthediscretizedTDSE . ........ 97 4.2.1 SolvingtheODE ................................. 97 4.2.2 Exponentiation of a matrix A ........................... 97 4.2.3 Runge-Kuttamethods . ... 99 4.2.4 Explicitvs. implicitRKmethodsb . ....... 100 4.2.5 Existence of a solution, consistency, convergence . ...............101 4 4.2.6 Stepsizecontrol ............................... 103 4.2.7 Stability..................................... 106 4.2.8 Crank-Nicolson ................................. 109 4.2.9 Splitstep(splitoperator)methods . .........110 4.2.10 ATDSEsolver .................................. 112 4.2.11 The Finite-Difference Time-Domain (FDTD) method . ...........113 5 Monte Carlo methods 119 5.1 Introduction.................................... 119 5.2 MonteCarlo(MC)integration . ........120 5.2.1 ReasonstouseMCintegration . 121 5.3 Randomnumbers................................... 123 5.3.1 Whatisrandom? —Testyourrandomnumbers! . ...... 123 5.3.2 Pseudo-randomNumberGenerator(RNG) . 124 5.3.3 MultipleRecursiveGenerators . ........125 5.3.4 Speedingupconvergence . 125 5.3.5 Distributions according to a probability density function ............ 126 5.3.6 Learningbydoing............................... 130 5.4 Isingmodel(1d).................................. 131 5.4.1 Finite temperatures kT > 0 ............................131 5.4.2 The naive approach: randomly probe the configuration space. 132 5.4.3 TheMetropolisalgorithm . 132 5.4.4 Generalization: Metropolis-Hastings Algorithm . ............134 5.4.5 Wang-Landausampling(WLS) . 135 6 Classical systems and chaos 139 6.1 TheKeplerproblem ................................ 139 6.1.1 Reduce to 1st order ODE / Hamiltonian formalism . ........139 6.2 Symplecticintegrators . ........140 6.2.1 Leapfrogpropagator . 140 6.2.2 Symplecticmetric.............................. 140 6.2.3 Splitsteppropagators . 141 6.2.4 Themeritofsymplecticintegrators . .........142 6.2.5 Performance................................... 143 6.2.6 Restricted3-bodyproblem . ...... 143 6.3 ClassicaltrajectoryMonte-Carlo. ............144 6.4 Parallelization................................. ....... 145 7 High performance and parallel computing 147 7.1 LAPACK — solving your linear algebra problems . ..........147 7.1.1 StructureoftheLAPACKpackage . 147 7.1.2 LAPACKsubroutinenames . 147 7.1.3 WhyisLAPACKfast? ............................... 149 5 7.1.4 LAPACKmatrixstorage. 149 7.2 Somegeneraladvice ............................... 150 7.3 ImproveCPUperformance. ...... 151 7.4 Parallelism..................................... 153 7.4.1 Possiblespeed-ups: Amdahl’slaw . ....... 154 7.4.2 Sharedvs. distributedmemory . ...... 155 7.4.3 Parallelalgorithm: examples. ........155 7.5 OpenMP.......................................... 156 7.6 MPI-messagepassinginterface . .........157 7.6.1 Existingsoftware .............................. 157 8 Grouptheoryonthecomputer:Youngtableaus 159 6 Chapter 1 Introduction 1.1 Where is computational physics used? March 4 issue of Physical Review Letters 26 out of 47 publications exclusively or essentially rely on large scale computations! In every single section: General Physics: Statistical, Quantum Mechanics, Quantum Information, etc. • Gravitation and Astrophysics • Elementary Particles and Fields • Atomic, Molecular, and Optical Physics • Nonlinear Dynamics, Fluid Dynamics, Classical Optics, etc. • Plasma and Beam Physics • Condensed Matter: Structure, etc. • Condensed Matter: Electronic Properties, etc. • Soft Matter, Biological, and Interdisciplinary Physics • 7 1.2 How are computers used? Rather incomplete list Fluid dynamics, plasma simulations: particle-in-cell (PIC) codes • Precision calculations of atomic and molecular properties: Hartree Fock (HF), Configuration • Interaction (CI) Solid state electronic structure: density functional theory (DFT), dynamical mean field theory • (DMF) “Soft matter”: molecular dynamics (MD), multi-scale techniques • Solution of model systems: e.g. Gross-Pitaevsky (GP), Ising problem, Fermi liquid • Transport in solids and nano-structures: Greens-function techniques • Large statistical systems: Monte-Carlo techniques • Qauntum Chromo Dynamics (QCD): e.g. lattice gauge theory • etc. ... • 1.3 Analytical and computational physics 1.3.1 Skills and techniques Sorted by importance: The best possible intuitive understanding of the physics. • Clear physical modelling. • Mathematical understanding of the equations: existence of solutions, operators, eigenvalues, • stability, well-posedness, conserved quantities( norm, energy, currents, symmetries). Visualization • Knowledge of numerical techniques: eigenproblems, linear algebra, random numbers, approx- • imation techniques, integration, differentiation, matrix structure, computational complexity, complex calculus, iterative methods, random numbers. Programming: data-structures, object oriented programming, re-usable code, documentation, • code management. Awareness of existing software: LAPACK, FFTW, integration routines, special functions • Understanding of computer architecture (for large-scale problems): data-locality, communica- • tion overhead, CPU vs. memory, parallelism 9 1.3.2 Computational and analytical techniques Computational and analytical work are closely entangled: large part of modern theory is for • computational evaluation. Computational physics continues where analytical techniques reach their limits. • Computational techniques can bridge gaps, i.e. we return to analysis after we have explored • using computational means. We cannot just “solve” and equation on the computer in the same sense as we solve it analyt- • ically. Instead of wondering how large a given effect might

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    160 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us