Valuation Models of Inflation Derivatives Using Pricing Kernel

Valuation Models of Inflation Derivatives Using Pricing Kernel

Valuation Models of Inflation Derivatives using Pricing Kernel Workshop "Finance and Insurance", Jena (Germany) March 16-20, 2009 Koichi Miyazaki (with Sho Ito) University of Electro-Communications, Dept. of Systems Engineering 1 1. Introduction (Background, Basics and Purpose) 1-1. Origin of the corporate-debt valuation model: Merton (1974), the structural model. Time t Time T (Maturity ) S Case of F T F = K t T Default St WT = 0 Wt Equity : FT = K W = max()S − K ,0 Case of T T S Bond : T Non Default FT = min()ST , K WT The firm’s asset-value process St under physical probability measure P dS = µS dt +σ S dzS S 2 1-2. Extension of the Merton model and our model -Black and Cox (1976) and Geske (1977): incorporate the effects of the coupons and covenants of corporate bonds. Extension in terms of “Cash Flow” -Shimuko, Tejima, and Deventer (1993): incorporate the stochastic interest rate proposed by Vasicek (1977). R dR = κ R − R dt +σ dz Instantaneous nominal interest-rate f : f ( f f ) Rf Rf Extension in terms of “Modeling of nominal interest rate” -Longstaff and Schwarz (1995): incorporating the Vasicek (1977) model into the Black and Cox (1976) model. Extension in terms of “Cash Flow” and “Modeling of nominal interest rate” -Zhou (1997): applies the jump-diffusion process in Merton (1976) to the valuation of corporate debt. dS ω+ηε Nominal company-asset S : = µS dt +σ S dzS + (e −1)dNt . Extension in terms of “Firm Value Process” S z However, to best of our knowledge, no valuation model of inflation derivatives in the structural model. Our Extension is in terms of “Modeling of real interest rate” and “Modeling of inflation” 3 z Inflation-linked government bonds - The U.S.A. in mid 1990s, Japan since 2004, Germany and Italy at much the same time as in Japan. - In the U.K. (since 1982) and Canada, the history of such bonds is much longer. US TIPS (Anual Issuance and Ratio of UK Index-Linked Gilt (Ratio of Outstanding) Outstanding 35 800 10.00% 30 8.00% 600 25 6.00% 400 20 4.00% (%) 15 Oku-Dollar 200 2.00% 10 0 0.00% 5 8 2 6 0 997 9 001 0 005 0 1 19 1999 20002 20 2003 2004 2 20 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 Year Year Fig1: US TIPS Fig2: UK LINKER z From now on, the active issuance of inflation-linked financial product may become feasible. - Thus, it is very useful to introduce a model that evaluates inflation related products. 4 1.3 Risk-neutral valuation and Pricing kernel valuation under the Merton model - Risk-neutral valuation (Valuation under Risk-neutral measure) dS Q ⎛⎛ 1 2 ⎞ Q ⎞ = R f dt + σ S dzS , ST = St exp⎜⎜ R f − σ S ⎟()T − t +σ S zS ()T − t ⎟ S ⎝⎝ 2 ⎠ ⎠ −Rf ()T −t Q + Equity value: W (t,T ) = e E [(ST − K ) ], Bond value: F()t,T = St −W (t,T ) - Pricing kernel valuation (Valuation under Physical measure) dM = −R dt +φ dz +φ dz dz dz Pricing kernel (Stochastic Discount Factor): M f S S u u , where u ⊥ S dS ⎛ dM ⎞ Nominal firm-asset S : = (R f + σ S λS )dt + σ S dzS , where λS dt = −Cov⎜ ,dzS ⎟ = −φS dt S ⎝ M ⎠ ⎡M T ⎤ Risk-free Bond value: P()t,T = Et ⎢ ⋅1⎥ ⎣ M t ⎦ ⎡M ⎤ W ()t,T = E T ()S − K + Equity value: t ⎢ T ⎥ , Bond value: F(t,T ) = St −W (t,T ) ⎣ M t ⎦ 5 1.4 Computational Method of Expectation in the Pricing kernel valuation Utilize moment generating function (m.g.f.) 2 2 When stochastic variable ()X ,Y ~ N 2 (µ1 , µ 2 ,σ 1 ,σ 2 , ρ ), its m.g.f. mXY (u,v)is given by ⎛ σ 2u 2 + 2ρσ σ uv +σ 2v2 ⎞ m u,v = exp ux + vy f x, y dxdy = exp⎜µ u + µ v + 1 1 2 2 ⎟ XY ()∫∫ ( )() ⎜ 1 2 ⎟ . ⎝ 2 ⎠ ⎡M T ⎤ −R f ()T −t MT ⎛⎛ 1 2 2 ⎞ ⎞ Risk-free Bond value: P()t,T = Et ⎢ ⋅1⎥ = e , = exp⎜⎜− R f − ()φS +φu ⎟()T − t +φS zS ()T − t +φu zu ()T − t ⎟ ⎣ M t ⎦ M t ⎝⎝ 2 ⎠ ⎠ ⎡M + ⎤ x ⎛ M ⎞ ⎛ S ⎞ + W ()t,T = E T ()S − K = e g ()()y f x, y dxdy X = ln⎜ T ⎟ Y = ln⎜ T ⎟ y Equity value: t ⎢ T ⎥ ∫∫ , ⎜ ⎟ , ⎜ ⎟ and g()y = (St e − K ) . ⎣ M t ⎦ ⎝ M t ⎠ ⎝ St ⎠ ⎛ 1 2 2 ⎞ 2 2 ⎛ 1 2 ⎞ 2 E[]X = ⎜− R f − ()φS + φu ⎟()T − t , V []X = (φS + φu )(T − t), E[]Y = ⎜ R f + σ S λS − σ S ⎟()T − t , V [Y ] = σ S (T − t), Cov(X ,Y ) = φSσ S (T − t). ⎝ 2 ⎠ ⎝ 2 ⎠ ∞ x Define f ()y ≡ e f (x, y )dx , ∫−∞ ∞ ∞ ∞ ∞ ∞ evy f ()y dy = evy e x f ()x, y dxdy = e x+vy f ()x, y dxdy = m ()1, v ∫−∞ ∫−∞ ∫−∞ ∫∫−∞ −∞ 2 ⎧ ⎛ 1 ⎞ ⎫ 2 2 ⎛ 2 ⎞ ⎛ σ ⎞ ⎛ σ ⎞ ⎪ ⎜ y − ⎜ R f − σ s ⎟()T − t ⎟ ⎪ = exp⎜ µ + 1 ⎟ exp⎜()µ + ρσ σ v + 2 v2 ⎟ 1 ⎪ ⎝ ⎝ 2 ⎠ ⎠ ⎪ ⎜ 1 ⎟ ⎜ 2 1 2 ⎟ f ()y = P (t,T ) exp⎨− ⎬ ⎝ 2 ⎠ ⎝ 2 ⎠ 2 2πσ S T − t ⎪ 2σ S ()T − t ⎪ ⎛ 1 σ 2 ()T − t ⎞ ⎪ ⎪ ⎜⎛ 2 ⎞ S 2 ⎟ ⎩ ⎭ = P()t,T exp⎜⎜ R f − σ S + ()λS + φS σ S ⎟v + v ⎟ ⎝⎝ 2 ⎠ 2 ⎠ 6 1.5 Equity value formula in the Merton model Equity value formula: ∞ ⎡M T + ⎤ x W ()t,T = Et (ST − K )= e g ()(y f x, y )dxdy = g ()()y f y dy We have only to evaluate ⎢ ⎥ ∫∫ ∫−∞ using the probability ⎣ M t ⎦ ⎧ 2 ⎫ ⎛ ⎛ 1 2 ⎞ ⎞ ⎪ ⎜ y − ⎜ R f − σ s ⎟()T − t ⎟ ⎪ 1 ⎪ ⎝ 2 ⎠ ⎪ ⎝ ⎠ . density function f ()y = P (t,T ) exp⎨− 2 ⎬ 2πσ S T − t ⎪ 2σ S ()T − t ⎪ ⎪ ⎪ ⎩ ⎭ ⎧ 2 ⎫ ⎛ ⎛ 1 2 ⎞ ⎞ ⎪ ⎜ y − ⎜ R f − σ s ⎟()T − t ⎟ ⎪ ∞ 1 ⎪ ⎝ ⎝ 2 ⎠ ⎠ ⎪ W ()t,T = g ()()y P t,T exp − dy ∫−∞ ⎨ 2 ⎬ 2πσ S T − t ⎪ 2σ S ()T − t ⎪ ⎪ ⎪ ⎩ ⎭ ⎧ 2 ⎫ ⎛ ⎛ 1 2 ⎞ ⎞ ⎪ ⎜ y − ⎜ R f − σ s ⎟()T − t ⎟ ⎪ ∞ ⎜ ⎟ y + 1 ⎪ ⎝ ⎝ 2 ⎠ ⎠ ⎪ = P()t,T ()St e − K exp − dy ∫−∞ ⎨ 2 ⎬ 2πσ S T − t ⎪ 2σ S ()T − t ⎪ ⎪ ⎪ ⎩ ⎭ ⎛ ⎛ 1 2 ⎞ ⎞ ⎛ ⎛ 1 2 ⎞ ⎞ ⎜ ln()St K + ⎜ R f + σ S ⎟()T − t ⎟ ⎜ ln()St K + ⎜ R f − σ S ⎟()T − t ⎟ ⎜ ⎝ 2 ⎠ ⎟ ⎜ ⎝ 2 ⎠ ⎟ = St Φ − KP()t,T Φ ⎜ σ T − t ⎟ ⎜ σ T − t ⎟ ⎜ S ⎟ ⎜ S ⎟ ⎝ ⎠ ⎝ ⎠ 7 1.6 Purpose of Our Research Using Pricing Kernel, (1-A) we derive closed-form valuation formulas of nominal and real (inflation-linked) corporate bonds. (1-B) we examine the sensitivity of nominal and real credit spreads on company parameters related to inflation. (2-A) we derive closed-form valuation formula of the non-defaultable inflation derivatives. (2-B) we examine the sensitivity of the non-defaultable inflation derivative prices. (3-A) we derive semi-closed-form valuation formula of the defaultable inflation derivatives. (3-B) we examine the sensitivity of the default premium in the inflation derivative prices. to attain some useful implication for corporate finance. 8 2 The setting and the valuation of the nominal government bond 2.1 Setting (Replacing the equity process with company value process in Brennan and Xia (2002)) dΠ z Price level Π : = πdt + σ Π dz Π (1) Π z Instantaneous expected inflation π : dπ = α(π − π )dt + σ π dzπ (2) dM M = −rdt + φS dz S + φr dzr + φπ dzπ + φu dzu = −rdt + φ′dz + φu dzu z Real-pricing kernel : M , (3) where φi (i = S,r,π ,u ) are constants and determine the corresponding market price of risks λS , λr , λπ and λu . z Instantaneous real interest-rate r : dr = κ(r − r)dt +σ rdzr (4) dS z Nominal firm-asset S : = (R f + σ S λS )dt + σ S dzS (5) S where λS is the constant unit-risk premium associated with the innovation, dzS , and Rf is the nominal interest rate. ′ z Price level Π process can be written by the innovations dz = []dzS ,dzr ,dzπ and the projection residualξudzu . dΠ = πdt + σ Π dzΠ = πdt + ξ S dz S + ξ r dz r + ξπ dzπ + ξ u dzu ≡ πdt + ξ ′dz + ξ u dzu (6) Π 9 2.2 Nominal government-bond price (Brennan and Xia (2002)) z The nominal-pricing kernel: M Π z The price of the nominal government bond that pays $1 at the maturity T , as follows: ⎡M T M t ⎤ P()t,T = Et ⎢ ⋅1⎥ (7) ⎣ ΠT Π t ⎦ T ⎛ 1 ⎞ T T ln()M T M t = ⎜− r ()s − VM ⎟ds + φ′dz + φu dzu (8) ∫t ⎝ 2 ⎠ ∫t ∫t T T T ⎛ 1 2 ⎞ ln()()Π T Π t = ⎜π s − VΠ ⎟ds + ξ ′dz + ξ u dzu (9) ∫t ⎝ 2 ⎠ ∫t ∫t ⎡ ⎤ ⎧ ⎫ ⎡M T M t ⎤ ⎧ ⎛ M T ⎞ ⎛ Π T ⎞⎫ ⎪ ⎡ ⎛ M T ⎞ ⎛ Π T ⎞⎤ 1 ⎡ ⎛ M T ⎞ ⎛ ΠT ⎞⎤⎪ (Proof) P()t,T = Et ⎢ ⋅1⎥ = Et ⎢exp⎨ln⎜ ⎟ − ln⎜ ⎟⎬⎥ = exp⎨Et ⎢ln⎜ ⎟ − ln⎜ ⎟⎥ + Vart ⎢ln⎜ ⎟ − ln⎜ ⎟⎥⎬ ⎜ M ⎟ ⎜ ⎟ ⎜ M ⎟ ⎜ ⎟ 2 ⎜ M ⎟ ⎜ ⎟ ⎣ ΠT Π t ⎦ ⎣⎢ ⎩ ⎝ t ⎠ ⎝ Π t ⎠⎭⎦⎥ ⎩⎪ ⎣ ⎝ t ⎠ ⎝ Π t ⎠⎦ ⎣ ⎝ t ⎠ ⎝ Π t ⎠⎦⎭⎪ ⎛ M ⎞ ⎛ Π ⎞ X = ln⎜ T ⎟ − ln⎜ T ⎟ E [exp X ] m ()1 m (t) Putting T ⎜ ⎟ ⎜ ⎟ , t T is equivalent to X T , where X T is moment generation function ⎝ M t ⎠ ⎝ Π t ⎠ ⎧ 1 2 ⎫ of X T and is given by exp⎨Et ()X T t + Vart ()X T t ⎬ . Therefore, we have only to evaluate Et [X T ] and Vart []X T . ⎩ 2 ⎭ ■ 10 3 Valuation of corporate bond and inflation-linked corporate bond (1-A) 3.1 Corporate bond (The discount bond that has maturity T and face amount K ) value F(t,T ) - First, find out the equity value by evaluating equation (10), then subtract it from the firm value to derive F()t,T .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    32 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us