The Canonical Ensemble and Microscopic Definition of T

The Canonical Ensemble and Microscopic Definition of T

From Atoms to Materials: Predictive Theory and Simulations Week 4: Connecting Atomic Processes to the Macroscopic World Lecture 4.2: The Canonical Ensemble and Microscopic Definition of T Ale Strachan [email protected] School of Materials Engineering & Birck Nanotechnology Center Purdue University West Lafayette, Indiana USA Statistical Mechanics: microcanonical ensemble Equal probability postulate: N,V,E Relationship between microscopic world and thermo: S = k logΩ(E,V , N ) Statistical Mechanics: canonical ensemble E+Ebath=Etot=Constant Sys Bath Probability of system being in a microscopic ({Ri},{Pi}) state with energy E: Since E<<Etot we expand logΩbath around Etot: Maxwell – Boltzmann distribution Canonical ensemble and thermodynamics Maxwell-Boltzmann distribution: Partition function: E P(E) − kT E e Ω(N,V , E) log Z(N,V ,T ) = logΩ(N,V , E)− kT Helmholtz free energy: E Canonical ensemble: averages Consider a quantity that depends on the atomic positions and momenta: In equilibrium the average values of A is: Ensemble average When you measure the quantity A in an experiment or MD simulation: Time average Under equilibrium conditions temporal and ensemble averages are equal Various important ensembles Microcanonical (NVE) Canonical (NVT) Isobaric/isothermal (NPT) Probability distributions E E−PV − − kT kT Z(T,V , N ) = ∑e Z P (T, P, N ) = ∑ ∑e micro V micro Free energies (atomistic ↔ macroscopic thermodynamics) S = k logΩ(E,V , N ) F(T,V , N ) = −kT log Z G(T, P, N ) = −kT log Z p Canonical ensemble: equipartition of energy Average value of a quantity that appears squared in the Hamiltonian Change of variable: Equipartition of energy: Any degree of freedom that appears squared in the Hamiltonian contributes 1/2kT of energy Equipartition of energy: MD temperature 3N K = kT 2 In most cases c.m. motion is set to zero at time zero (constant of motion → it remains zero) 3N − 3 K = kT 2 Often angular momentum is zeroed (and remains zero) 3N − 6 K = kT 2 Temperature is related to average kinetic energy. Instantaneous temperature: N K(t) = eff kT(t) 2.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    8 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us