Animal-Mediated Organic Matter Transformation: Aquatic Insects As a Source of Microbially Bioavailable Organic Nutrients and Energy

Animal-Mediated Organic Matter Transformation: Aquatic Insects As a Source of Microbially Bioavailable Organic Nutrients and Energy

Received: 11 June 2018 ( Accepted: 30 October 2018 DOI: 10.1111/1365-2435.13242 !"#"$!%&'$!()%*" !"#$%&'$()#%*()+,-.%"#/+$%**(-+*-%"01,-$%*#,"2+!34%*#/+ #"0(/*0+%0+%+0,4-/(+,1+$#/-,5#%&&6+5#,%7%#&%5&(+,-.%"#/+"4*-#("*0+ %")+("(-.6 Thomas B. Parr8 ( Krista A. Capps9:; ( Shreeram P. Inamdar8 ( Kari A. Metcalf< #Q*>,-16*310540R:,310,390D52:0 D.2*3.*B0S32T*-+2180540Q*:,U,-*B0V*U,-=B0 !50*-%/* Q*:,U,-* 1. Animal communities are essential drivers of energy and elemental flow in ecosys< ! Odum School of Ecology, University of 1*6+'0X5U*T*-B04*U0+1792*+0/,T*023T*+12;,1*901/*0473.1253,:0-5:*0540,326,:+0,+0 Georgia, Athens, Georgia sources of dissolved organic matter (DOM) and the subsequent utilization of that 3Savannah River Ecology Laboratory, Aiken, D571/0W,-5:23, DOM by the microbial community. CTetra Tech Inc, Portland, Maine 2. In a small forested headwater stream, we tested the effects of taxonomy, feeding Correspondence traits, and body size on the quality and quantity of dissolved organic carbon (DOC) J/56,+0N'0R,-- and dissolved organic nitrogen (DON) excreted by aquatic insects. In addition, we Email: [email protected] .5397.1*90+1*,98<+1,1*0+5:71*0,9921253+0150*+126,1*023+1-*,609*6,39045-0:,?2:*0W0 Present Address ,390.56>,-*902101501/*0W0*M.-*1*90?8023T*-1*?-,1*+' J/56,+0N'0R,--B0Q*>,-16*310540N25:5;8B0 Oklahoma Biological Survey, University of 3. Individual excretion rates and excretion composition varied with body size, tax< Oklahoma, Norman, Oklahoma 535680,3904**923;0;72:9'0J/*0*+126,1*90,T*-,;*0.566732180*M.-*12530-,1*0U,+0 −1 −1 −1 <# 1.31 μg DOC· per mg insect dry weight (DW) 0/- and 0.33 μg DON·mg DW 0/- B0 =4")#".+#"1,-$%*#," + University of Delaware, Grant/Award and individuals excreted DON at nearly twice the rate of NH4 . Number: IIA-1301765; University of 4. This DOM was 2–5 times more bioavailable to microbial heterotrophs than ambi< Oklahoma, Grant/Award Number: DEB- 1457542 ent stream water DOM. 5. We estimated that the insect community, conservatively, excreted 1.62 mg of bio< Handling Editor: Shawn Leroux available DOC·m−20/-−10,3901/-57;/0+1*,98<+1,1*0,9921253+06*,+7-*90,30,6?2*310 labile C demand as 3.97 ± 0.67 mg C m−20/-−1'0J/2+0+7;;*+1+01/,1023+*.1<6*92,1*90 transformation and excretion of labile DOC could satisfy a significant fraction (40 ± 7%) of labile C demand in this small stream. O'0 W5::*.12T*:8B057-0-*+7:1+0+7;;*+101/,10,326,:0*M.-*12530>:,8+0,30*++*312,:0473.1253,:0 -5:*02301-,3+45-623;05-;,32.06,11*-02315062.-5?2,::80?25,T,2:,?:*045-6+0,3906,80 +,12+480,0T,-2,?:*0?710+2;3242.,310>5-1253054062.-5?2,:09*6,39045-0:,?2:*0W0,390V' KEYWORDS ?25;*5./*62.,:0.8.:23;B0?-5U3045590U*?B0.53+76*-0371-2*310983,62.+B092++5:T*905-;,32.0 .,-?53B092++5:T*905-;,32.0321-5;*3B062.-5?2,:0*.5+8+1*6B05-;,32.06,11*-09*.56>5+21253 1 ( INTRODUCTION ?25;*5./*62.,:0.8.:*+0@A*1.,:4*0*10,:'B0!"#C%0D./621E0*10,:'B0!"#C%0 F,3;0 G0 H-,1153B0 !"#C%0 I57B0 J/K?,7:1B0 L,.-52MB0 G0 N,-51B0 !"#OP'0 )*+*,-./0,101/*0231*-4,.*0540.566732180,390*.5+8+1*60*.5:5;8023< J/*0,?739,3.*B0?256,++B0,390473.1253,:0,3901,M53562.0.56>5< .-*,+23;:80+**=+0150739*-+1,3901/*0473.1253,:0-5:*0,326,:+0>:,80230 +21253+0540,326,:0.56673212*+0.,30+/,>*01/*0+152./256*1-8B0-,1*+0 !"#$%&'#()*+$')',-.*!"#$%#&#!' wileyonlinelibrary.com/journal/fec !"#$%&"'()"*+,(-./0"1+23,4-256"73-6-89" ( ! !"#$%&":.4,4/("73-6-84356";-34),9 2 " Functional Ecology !"##$%&$"'( ,3906,;32179*+0540*:*6*31,:04:5U+01/-57;/0*.5+8+1*6+0T2,0.53< inorganic nutrient recycling. As such, animal influences on inor< +76*-<9-2T*30371-2*310.8.:23;B0U/2./0.,3B023017-3B0234:7*3.*045590 ;,32.0371-2*310.8.:23;0,-*065-*0*44*.12T*:80231*;-,1*9023150?25;*5< web dynamics (Atkinson, Capps, Rugenski, & Vanni, 2017; Roman ./*62.,:0,39045590U*?0659*:+01/,30,-*0,326,:<6*92,1*9026>,.1+0 & McCarthy, 2010; Vanni, 2002). Inorganic nutrient recycling on organic nutrient dynamics and the flow of energy (Atkinson 23*M1-2.,?:80:23=+01/*01-5>/2.0983,62.+0540;-**305-0>-26,-80>-5< et al., 2017; Zou et al., 2016). Though limited, evidence suggests 97.1253<?,+*9045590U*?+0U21/01/5+*0540?-5U305-09*1-217+<?,+*90 that a portion of ingested resources are excreted as DOC (James, 45590U*?+0@Q,74-*+3*B0L,.-52MB0N*3/,26B0G0L5-*,7B0!""$%0R,.*B0 Xenopoulos, Wilson, & Frost, 2007; Meyer & O’Hop, 1983), which Cole, Carpenter, & Kitchell, 1999; Zou et al., 2016). In contrast, 6,80 ?*0 :*410 65-*0 ?25,T,2:,?:*0 97*0 150 >/8+2.,:0 @*';'B0 4-,;6*31,< 1/*06,;32179*0540,326,:<6*92,1*904:5U+05405-;,32.0371-2*31+0,390 1253P0 ,390 ./*62.,:0 @*3E86,12.0 ?-*,=95U30 540 6,.-565:*.7:*+P0 5-;,32.0*3*-;80,3901/*0473.1253,:0-5:*+01/*+*0>:,80230*.5+8+1*6< digestive processes (Jumars et al., 1989; Metcalfe et al., 2014; level processes are understudied. Importantly, animal metabolism Moore et al., 2004). In a detritus-based ecosystem, addition of 6*92,1*+0 1/*0 5315;*32.0 1-,3+45-6,12530 540 45590 -*+57-.*+B0 >-5< labile carbon stimulated microbial production and subsequently 97.23;0>,-12.7:,1*0,39092++5:T*905-;,32.0U,+1*+0@W/*-240G0L5-*,7B0 enhanced detritivore production (Wilcox, Bruce Wallace, Meyer, 2013; Jumars, Penry, Baross, Perry, & Frost, 1989; Moore et al., & Benstead, 2005). Thus, microbes utilizing labile organic excreta !""CPY1/*0:,11*-0540U/2./06,80+7>>5-1047-1/*-062.-5?2,:0>-597.< ,3904-560,326,:+04**923;02301/*0;-**305-0?-5U3045590U*?+06,80 tion (Jumars et al., 1989; Nagata, 2000). Thus, organic “wastes” >-5T29*0,0>5+212T*04**9?,.=0530,326,:+04**923;0530?-5U3045590 >-597.*90?80,326,:+06,80-*>-*+*310,0+2;3242.,310?25;*5./*62.,:0 U*?062.-5?*+' 4:7M0540:,?2:*05-;,32.06,11*-01/,1047-1/*-0:23=+0;-**30,390?-5U30 S39*-+1,3923;01/*0-5:*+054023+*.1+0230>-597.23;062.-5?2,::80 45590U*?+' ?25,T,2:,?:*0 *3*-;80 ,390 371-2*31+0 4-560 5-;,32.0 6,11*-0 2+0 26< Insects are key detritivores in many ecosystems and, after mi< >5-1,31045-0>-*92.123;0/5U0?25;*5./*62.,:0>-5.*++*+0,39045590 crobes, are often the most ubiquitous and abundant animals and crit< U*?0 983,62.+0 -*+>5390 150 ,31/-5>5;*32.0 >*-17-?,1253+0 1/,10 ical drivers of ecosystem function (Yang & Gratton, 2014). In streams, negatively impact insect abundance (Hallmann et al., 2017) and insects process large quantities of living and detrital organic matter, 92T*-+2180 @Q2-E50 *10 ,:'B0 !"#CPB0 ,390 1/,10 >-597.*0 +/241+0 230 23+*.10 and accelerate decomposition (Wallace & Webster, 1996). The use of .566732180.56>5+212530@X,U=23+0G0F7,3B0!"#OP'0J502::7623,1*0 9244*-*31045590-*+57-.*+09*>*39+B0230>,-1B0530,302392T297,:Z+04**923;0 the role of animals in shaping the quantity, chemical composi< guild (functional feeding group (FFG; Cross, Wallace, & Rosemond, tion and bioavailability of DOM in streams, we focused on in< 2007). For instance, shredders (vascular plant tissues and some mi< sects and asked two questions: (a) How do taxonomy and trophic .-5?*+P0 ,390 >-*9,15-+0 @.53+7623;0 51/*-0 ,326,:+P0 /,T*0 92+123.10 -*< feeding guilds affect the rate and composition of DOM excreted +57-.*0?,+*+B0U/2:*0.5::*.15-+0@;,1/*-*-+0,39042:1*-*-+P0,390+.-,>*-+0 by aquatic insects? (b) Does DOM excreted by insects provide an share a resource base (microbes, algae and detritus). Some aquatic energy and/or nutrient subsidy to heterotrophic microbes? We insects can satisfy >20% and up to 100% of their C demands by con< investigated these questions through field excretion incubations suming bacteria (Collins, Sparks, Thomas, Wheatley, & Flecker, 2016; measuring the rate and composition of DOM excretion, and lab< Hall & Meyer, 1998). 5-,15-80*M>*-26*31+06*,+7-23;01/*062.-5?2,:09*;-,9,1253054023< Growth of microbial heterotrophs (hereafter “microbes”) may sect-excreted DOM. ?*0:2621*905-0.5<:2621*90?805-;,32.0*3*-;80@:,?2:*0WP05-0371-2*310@VB0 P) availability (Daufresne et al., 2008; Sinsabaugh, Hill, & Follstad Shah, 2009). Much of this resource demand is supplied by dissolved 2 ( MATERIALS AND METHODS organic matter (DOM; Jumars et al., 1989; Meyer, 1994)—a complex 62M17-*054065:*.7:*+0U21/0*:*6*31,:0+152./256*1-2*+095623,1*90?80 The Fair Hill Experimental Watershed (39.718° N, 75.835° W) is C, H, O, N, P and S. In marine and freshwater ecosystems, <20% ,0U*::<+1792*90.:5+*<.,35>2*90/*,9U,1*-0+1-*,60U,1*-+/*90U21/0 of the ambient DOC is typically bioavailable to heterotrophic mi< 42-+1<0,390+*.539<5-9*-0+7?U,1*-+/*9+02301/*0V5-1/*-30R2*965310 crobes (Søndergaard & Middelboe, 1995), most likely leaving them ecoregion of Maryland, United States of America. The mean an< .,-?53<:2621*905-0.,-?53<371-2*31+0.5<:2621*90@N*-3/,-910G0L2=*3+B0 nual water temperature is 12.6°C and ranges from 0°C during the 2002; Daufresne et al., 2008; Sinsabaugh, Follstad Shah, Hill, & winter to 24°C (S.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    12 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us