Finiteness of Orbit Structure for Real Flag Manifolds

Finiteness of Orbit Structure for Real Flag Manifolds

JOSEPH A. WOLF* FINITENESS OF ORBIT STRUCTURE FOR REAL FLAG MANIFOLDS ABSTRACT. Let G be a reductive real Lie group, a an involutive automorphism of (7, and L = G u the fixed point set of a. It is shown that G has only finitely many L-conjugacy classes of parabolic subgroups, so if P is a parabolic subgroup of G then there are only finitely many L-orbits on the real flag manifold G/P. This is done by showing that G has only finitely many L-conjugacy classes of a-stable Cartan subgroups. These results extend known facts for the case where G is a complex group and L is a real form of G. Key words and phrases: flag manifold, reductive Lie group, semisimple Lie group, para- bolic subgroup, Caftan subgroup, Cartan subalgebra. AMS Subject Classification (1970) Primary: 22-50, 22-70, 53-66 Secondary: 14-45, 57-47 1. INTRODUCTION One knows [4] that there are only finitely many conjugacy classes of Cartan subalgebras in a reductive real Lie algebra. If G is a complex reductive Lie group and L is a real form, it follows [8] that there are only finitely many L-eonjugacy classes of parabolic subgroups of G. In particular, if X= G/P is a complex flag manifold of G, then [8] there are only finitely many L-orbits on X. Here we extend these results to the case where G is a reductive real Lie group and L is the fixed point set of an involutive automorphism, and we indicate the scope of applicability of the extension. 2. CONJUGACY OF CARTAN SUBALGEBRAS If G is a Lie group then Go denotes its identity component, g denotes its Lie algebra, and Int (g) denotes the inner automorphism group {Ad (g):g e Go) of g. THEOREM 1. Let g be a reductive real Lie algebra, a an involutive auto- morphism of g, and 1= g~ its fixed point set. Let L o denote the analytic sub- group oflnt (g ) for I. Then there are only finitely many Lo-conjugacy classes of a-stable Cartan subalgebras of g. Proof. It suffices to consider the case where g is semisimple and has no proper a-stable ideal. We now assume that, and we fix the notation g = I +m where rrt= {x~g:tr(x)= -x}. * Research partially supported by NSF Grant GP-16651. Geometriae Dedicata 3 (1974) 377-384. All Rights Reserved Copyright © 1974 by D. Reidel Publishing Company, Dordrecht-Holland 378 JOSEPH A. WOLF Case 1: Int(g) is compact. This case follows directly from Kostant's proof [4] that g* = I +ira has only finitely many conjugacy classes of Cartan subal- gebras. Kostant shows that every Cartan subalgebra of g* is conjugate to a a-stable one and that g* has only finitely many Lo-conjugacy classes of a-stable Cartan subalgebras D*. Then ~)* ~ D = ([9* n I) + i(D* n ira) gives our finiteness assertion. Case 2: Int(g) is complex and a is conjugate-linear. Then I is a real form of g, and our assertion is Kostant's result [4] on finiteness of the number of conjugacy classes of Cartan subalgebras of I. Case 3: Int (g) is complex and a is complex-linear. This is the nontrivial case. Fix a Cartan involution 8 of g that commutes with a. Its fixed point set go is a a-stable compact real form of g, so go=iO+m 0 where 1°=Ing° and m °=mc~g°. Let Lg denote the analytic subgroup of Lo for [o. Case 1 tells us that gO has only finitely many Lo°-conjugacy classes of a-stable Caftan subalgebras. Since gO is a real form of g, this says that g has only finitely many Lo°-conjugacy classes of 0-stable a-stable Cartan subalgebras. L~-conjugacy implies Lo- conjugacy. Now we need only show that every Lo-conjugacy class of a-stable Caftan subalgebras of g contains a 0-stable algebra. Let ~ be an Lo-conjugacy class of a-stable Cartan subalgebras of g. We first consider the situation if D~¢' then D:m i.e. [)c~I=0. Fix t)~ and let [)~ be its real form spanned by the roots. If ~b is an b-root then a*q~= -~b because Dcrrt. Thus g has a a-stable compact real form g' with i D# = g'. Let 0' denote the Cartan involution of g that is complex con- jugation over g'. Evidently 0' (t))= t). Thus, to exhibit a 8-stable element of it suffices to prove that 0 and 0' are L0-conjugate, and for this we need only check that g'= gO' is Lo-conjugate to gO. As g' is a-stable, I °' = I c~ g' is a compact real form of I, hence is Lo-con- jugate to I °. Thus we may assume I°'= I °. That assumption made, g'= = I ° +m °' just as gO= i0 +m o. Since I ° is a real form of I, I°c 0 °r and 00' is complex linear, we now have I ~ goo'. (=8 '-1.8 is a complex linear automorphism of g and trivial on [, so (Ira commutes with every element of Loire. If ~1,~= + 1 then 0 = + 0' on m, so m °' = rrt e or m °" =im °. If ra °' = m ° then g' = go as desired. If m °" = ira ° then g'= I ° +ira °, which is noncompact, contradicting the fact that 8' is a Cartan involution. Now we assume ~1,,~ + 1. g is simple because it has no proper ORBIT STRUCTURE FOR REAL FLAG MANIFOLDS 379 a-stable ideal, so now (go, p) is an irreducible hermitian symmetric pair, and re=m+ +m_ direct sum of I-invariant I-irreducible subspaces that are interchanged by 0 and also by 8'. Thus we have a complex number g with ~1~+=~ and ~l~.=~. Let x± era± and compute x+ +x_ = 02(x+ +x_) = (o'¢)'(x+ + x_) = O'~(O'~x_ + O'~x+) = + Thus ~ = 1 and ~ = Ad (z) where z is central in L~. Now Om°" = O' Ad (z) m °' = • = 0'11l °" = 1110', SO m e' = (m"" n m °) + (m °' c~ ira"). The second summand vanishes because g' is compact. We conclude g'= ga. In summary: if JY is an Lo-conjugacy class of a-stable Caftan subalgebras of g, and if be.~ implies I~=m, we have shown that ~Y' contains a P-stable algebra. Now let .Yg be any Lo-conjugacy class of a-stable Cartan subalgebras of g. Let ~)~ ~¢g and split [~ = (b n I)+ (I~ nm). Passing to the derived algebra of the g-centralizer of ~ n I, we reduce to the case just considered, obtaining a P-stable Lo-conjugate of ~). This completes the argument for Case 3. Case 4: the general case. Let n=dimg, r=rank g and N=(n) - 1. Use Pliicker coordinates to view the Grassmannian of r-dimensional subspaces of gc as a subvariety of the complex projective space PN(C). Let Loc denote the analytic subgroup of Int(g c) with Lie algebra I c. Now every LC-eon - jugacy class of Cartan subalgebras of gc is an LC-orbit on pN (C) under the rational representation A' (Adln t (gc)lLc). If O is such an orbit, then [6, Lemma 1.1 ] ~ c~ P N(R) is a finite union of Lo-orbits. Case 4 now follows from Cases 2 and 3. Q.E.D. 3. CONJUGACY OF PARABOLIC SUBGROUPS If G is a connected complex semisimple Lie group with Lie algebra g, and if P is a complex Lie subgroup with Lie algebra p, then one has equivalent conditions (i) G/P is compact, (ii) G/P is a compact simply connected kaehler manifold, 380 JOSEPH A. WOLF (iii) G/P is a complex projective variety, (iv) G/P is a closed G-orbit in a projective representation. Under those circumstances, P is a parabolic subgroup of G, p is a parabolic subalgebra of g, and one can see that P= {#~G:Ad(g) p =p}. Let G be a complex Lie group, g its Lie algebra, ~ the solvable radical of fl, and n:g ~ fl/~ the projection. The parabolic subalgebras of g are the n -1 (q) where q is a parabolic subalgebra of g[~. The parabolic subgroups of G are the normalizers P= {g~G:Ad(g) p =p} where p is a parabolic subal- gebra of g; then p is the Lie algebra of P. Let G be a real Lie group and fl its Lie algebra. Then parabolic subalgebra of g means a subalgebra p = g c~ q where q is a parabolic subalgebra of gc stable under complex conjugation over ft. The parabolic subgroups of G are the normalizers P = {g ~ G: Ad (g) p = p } where p is a parabolic subalgebra of fl, and then P has Lie algebra p. THEOREM 2. Let G be a real Lie group, tr an involutive automorphism of G, and L= G° its fixed point set. Then there are only finitely many Lo-con- jugacy classes of parabolic subgroups of G. Proof. We will show that g has only finitely many Lo-eonjugacy classes of parabolic subalgebras. For this we may assume G connected and simply connected. Now G has ¢-stable Levi decomposition GI" S where S is the solvable radical and we may replace G by its semisimple quotient G/S ~- Gt. Thus we may assume g semisimple. Let p be a parabolic subalgebra of g. Then p c~ a (p) is a-stable and con- tains a Cartan subalgebra of g, so it contains a a-stable Cartan subalgebra D of g.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    8 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us