Supplemental Data • Figure S1: Detailed phylogenetic tree with 202 labeled families in spermatophytes. Colored dot represent the character states of the species within each family. Each terminal taxon is labeled with up to four states. The scale bar represents 40.0 million years. • Table S1: List of papers used to categorize pollen. • File S1: Glycosyl composition analysis completed at the Complex Carbohydrate Research Center at the University of Georgia for Passiflora incaranta. • File S2: Glycosyl linkages analysis completed at the Complex Carbohydrate Research Center at the University of Georgia for Passiflora incaranta. • File S3: Nexus file used in our analysis. This file includes the morphological data for all spermatophyte families and the phylogenetic tree. Figure S1: Phylogenetic Tree with Family Names Phytolaccacea N e L e Cary Po y a a e e Molluginacea c e e PlumbaginaceaAmaranthacea c t c r y c e e e a tul A e Basellacea a Cactacea t a e T e i g i oph h e e Polygonacea i F a r acea z i n i e acacea n e ra lin d o i G Tamaricacea o ni a a Sax acea n y u r tacea e c m c e o acea e ke ll q e e e Haloragaceass e acea l u Cerc po racea e a Penthoracea i ni a fra o o e e ul e e e Hamame e e th P Crassulacea acea F arrace e Sa e Ebenacea ar e Primulacea e g e Styracacea e idiph S l e Actinidiacea acea i acea e Roridulacea acea e C e Zygophyllacea Ericacea e Balsaminacea lidi s Pae Menyanthacea e t y e Asteracea e lid ll e Calyceracea Elaeocarpacea acea e Sty e o Celastraceaoni e c acea e Campanulacea acea e i acea Adoxacea li Cunoniacea e Caprifoliacea e e d e Pittosporacea e e Ara u Oxalidacea acea Connaracea e Apiacea n e E Malpighiacea e Aquifoliaceaa ti e e e Garryacean Hypericacea e Rubiaceae Ca e G acea loph e Gelsemiaceagin e e Apocynaceaora e E y B upho Linaceallacea e e e e Convolvulaceaacea rbi Solanaceagin PassifloraceaSalicaceaacea e a e Oleaceaant Pl e e e Violacea Scrophulariacea Ac e acea e h e Stilbaceai e ari Lam PhyllanthaceaOchnaceaacea e e e Phrymacea e Orobanchacea Pol e ariacea yga e Paulowniaceae lacea entibul Fa e L e Rhamnaceabacea Acanthacea e e Urticacea e Martyniacea e s Bignoniacea Moraceae Verbenacea e Cannabaceae eriacea esn e G e Ulmacea Cornacea e e m Loasacea Rosaceae e Hydrangeacea G r Betulacea e Ginkgoaceae y e Juglandacea Pinaceae m e Myricaceae Cupressacea Fagaceae e T n e axaceae p Gn Coriariaceae etacea o We e lwi s s Begoniacea e Eph tschiacea tacea p ucurbi e edracea e C Zamiacea Cistacea e e e o Amborellaceae Bixacea e r i acea Cabombacea m ingi e Nymphaeacea e unt e M Austrobaileyaceae s g Cytinacea e Schisandracea Malvacea e Piperacea e B acea e n d S au a ThymelaeaceaRese e Ar ru e e s e Magnoliaceaist raceae e olo a A Brassicacea A e e nnon chi l Cleomaceaacea Calycanthacea acea i e L acea Capparaceavar e a e Araceau e racea To e Tofieldiacea e e Alismatacea M Limnanthacea e Hy e e e a Tropaeolacea e B d uto g e Aponogetonacearo AnacardiaceaRutacea e J c e Potun maceah e n SimaroubaceaMeliacea Dioscoreacea ar e ca o e Velloziacea i e am tacea e Cyc gin l Sapindacea Orchidacea e i e i Doryanthacea og e acea d e I l e Xanthorrhoeacear a e Stachyuracea e id s Amaryllidacea n ton e Asparagacea StaphyleaceaMyrtacea acea e t t Tecophilaeacea acea h e e Arecacea e Lythracea acea e Commelinacea acea acea re Haemodoracea e Pont e M e e b ni e Heliconiacea e Onagracea tacea Lowi e Zingiberacea T Melastomatacea i B e X e m e u e e e V e y e e o y r sacea e era racea a a a o ph C r e e e e G i Buxacea m Melianthacea d acea d nd c c c e acea a e er e a a e a i Gunneracea i c l cacea r o i e i h e e Platanacea Liliacea a acea e e P t hi e hod a c c n e e m e c e a e e o a Smilacacea ol l Berberidacea e e r Ranunculacea Papaveracea Nelumbonacea o e e e e e C T r Lardizabalacea t M s l A M o n o c o t s Not At Equilibrium, <1μm Not At Equilibrium, 1-3μm 40.0 Not At Equilibrium, >3μm At Equilibrium Supplemental Figure 1: Detailed Angiosperm Phylogenetic Tree with Character States. Phylogenetic tree of spermatophytes with 202 families at terminal taxa. Colored dot represent the character states of the species within each family. Each terminal taxon is labeled with the family name and with up to four states. The numbered families (27 in total) are those which have species that are in an equilibrium states. The families listed in black have more than one state; families listed in bold (seven of the 27) only have species that are in an equilibrium state. The scale bar represents 40.0 million years. Table S1: List of papers used to categorize pollen Literature used to categorize pollen species into equilibrium or non-equilibrium states Family References Annonaceae Gabarayeva 1995 Araceae Anger & Weber 2006, Weber et al. 1998 Aristolochiaceae Gonzalez et al 2001, Polevova 2015 Blackmore & Barnes 1988, Blackmore et al. 2010, Tomb et al. 1974, Takahashi 1989, Asteraceae Dickinson & Potter 1976, Blackmore & Barnes 1987, Horner Jr. & Pearson 1978 Austrobaileyaceae Zavada 1984 Boraginaceae Gabarayeva et al. 2011 Brassicaceae Fitzgerald & Knox 1995 CaryoPhyllaceae HesloP-Harrison 1963, Audran & Batcho 1981, ShouP et al 1980 Convolvulaceae Echlin et al. 1966 EPhedraceae Doores et al. 2007 Gnetaceae Yao et al, 2004 Heliconiaceae Stone 1987 Hydrocharitaceae Takahashi 1994 Lauraceae Stone 1987, Rowley & Vasanthy 1993 Liliaceae Sheldon & Dickinson 1986, HesloP-Harrison 1968 Malvaceae Takahashi & Kouchi 1988 Nyctaginaceae Takahashi & Skvarla 1991 NymPhaeaceae Takahashi 1992 Papaveraceae Romero et al 2003 Welwitschiaceae Doores t al. 2007 Literature cited Gabarayeva, N.I. Pollen wall and tapetum development in Anaxagorea brevipes (Annonaceae): sporoderm substructure, cytoskeleton, sporopollenin precursor particles, and the endexine problem. Rev. Palaebot. Palynol. 85, 123-152 (1995) Anger, E.M. & Weber, M. Pollen-wall formation in Arum alpinum. Ann. Bot. 97, 239-244 (2006) Weber, M., Halbritter, H., & Hesse, M. The spiny pollen wall in Sauromatum (Araceae)-with special reference to the endexine. Int. J. Plant Sci. 159, 744-749 (1998) González, F., Rudall Fls, P.J., Furness, C.A. Microsporogenesis and systematics of Aristolochiaceae. Bot. J. Linn. Soc. 137, 221-242 (2001) Polevova, S.V. Ultrastructure and development of sporoderm in Aristolochia clematitis (Aristolochiaceae). Rev. Palaeobot. Palynol. 222, 104-115 (2015) Blackmore, S. & Barnes, S.H. Pollen ontogeny in Catananche caerulea L. (Compositae: Lactuceae) I. Premeiotic phase to establishment of tetrads. Ann. Bot. 62, 605-614 (1988) Blackmore, S., Wortley, A.H., Skvarla, J.J., & Gabarayeva, N.I. Developmental origins of structural diversity in pollen walls of Compositae. Plant Syst. Evol. 284, 17-32 (2010) Tomb, A.S., Larson, D.A., & Skvarla, J.J. Pollen morphology and detailed structure of family Compositae, tribe Cichorieae. I. Subtribe Stephanomeriinae. Am. J. Bot. 61, 486-498 (1974) Takahashi, M. Pattern determination of the exine in Caesalpinia japonica (Leguminosae: Caesalpinioideae). Am. J. Bot. 76, 1615-1626 (1989) Dickinson, H.G., Potter, U. The development of patterning in the alveolar sexine of Cosmos bipinnatus. New Phytol. 76, 543-550 (1976) Blackmore S. & Barnes, S.H. Pollen wall morphogenesis in Tragopogon porrifolius L. (Compositae: Lactuceae) and its taxonomic significance. Rev. Palaeobot. Palynol. 52, 233-246 (1987) Horner Jr., H. T. & Pearson, C. B. Pollen wall and aperture development in Helianthus annuus (Compositae: Heliantheae). Am. J. Bot. 65, 293-309 (1978) Zavada, M. S. Pollen wall development of Austrobaileya maculata. Int. J. Plant Sci. 145, 11-21 (1984) Gabarayeva, N., Grigorjeva, V., & Polevova, S. Exine and tapetum development in Symphytum officinale (Boraginaceae). Exine substructure and its interpretation. Plant Syst. Evol. 296, 101- 120 (2011) Fitzgerald, M. A. and Knox, R. B. Initiation of primexine in freeze-substituted microspores of Brassica campestris. Sex. Plant Reprod. 8, 99-104 (1995) Heslop-Harrison, J. An ultrastructural study of pollen wall ontogeny in Silene pendula. Grana. 4, 7-24 (1963) Audran, J., Batcho, M. Microsporogenesis and pollen grains in Silene dioica (L.) Cl. and alterations in its anthers parasite by Ustilago violaceae (Pers.) Rouss. (Ustilaginales). Acta. Soc. Bot. Pol. 50, 29-32 (1981) Shoup, J. R., Overton, J. & Ruddat, M. Ultrastructure and development of the sexine in the pollen wall of Silene alba (Caryophyllaceae). Bot. Gaz. 141, 379-388 (1980) Echlin, P., Chapman, B., Godwin, H., & Angold, R. The fine structure and development of the polen of Helleborus foetidus L. J. Electron Microsc. 2, 315-316 (1966) Doores, A. S., Osborn, J. M., El-Ghazaly, G. Pollen ontogeny in Ephedra americana (Gnetales). Int. J. Plant Sci. 168, 985-997 (2007) Yao, Y. F., Xi, Y. Z., Geng, B. Y., & Li, C. S. The exine ultrastructure of pollen grains in Gnetum (Gnetaceae) from China and its bearing on the relationship with the ANITA Group. Bot. J. Linn. Soc. 146, 415-425 (2004) Stone, D. E. Developmental evidence for the convergence of Sassafras (Laurales) and Heliconia (Zingiberales) pollen. Grana. 26, 179-191 (1987) Takahashi, M. Pollen development in a submerged plant, Ottelia alismoides (L.) Pers. (Hydrocharitaceae).
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages21 Page
-
File Size-