
<p><strong>International Journal for Research in Engineering Application & Management (IJREAM) </strong><br><strong>ISSN : 2454-9150 Vol-04, Issue-09, Dec 2018 </strong></p><p><strong>Relations on Semigroups </strong></p><p><sup style="top: -0.46em;"><strong>1</strong></sup><strong>D.D.Padma Priya, </strong><sup style="top: -0.46em;"><strong>2</strong></sup><strong>G.Shobhalatha, </strong><sup style="top: -0.46em;"><strong>3</strong></sup><strong>U.Nagireddy, </strong><sup style="top: -0.46em;"><strong>4</strong></sup><strong>R.Bhuvana Vijaya </strong><br><sup style="top: -0.46em;"><strong>1 </strong></sup><strong>Sr.Assistant Professor, Department of Mathematics, New Horizon College Of Engineering, </strong><br><strong>Bangalore, India, </strong><br><strong>Research scholar, Department of Mathematics, JNTUA- Anantapuram </strong><br><a href="mailto:[email protected]" target="_blank"><strong>[email protected] </strong></a><br><sup style="top: -0.46em;"><strong>2</strong></sup><strong>Professor, Department of Mathematics, SKU-Anantapuram, India, [email protected] </strong><br><sup style="top: -0.46em;"><strong>3</strong></sup><strong>Assistant Professor, Rayalaseema University, Kurnool, India, [email protected] </strong><br><sup style="top: -0.46em;"><strong>4</strong></sup><strong>Associate Professor, Department of Mathematics, JNTUA- Anantapuram, India, </strong><a href="mailto:[email protected]" target="_blank"><strong>[email protected] </strong></a></p><p><strong>Abstract: Equivalence relations play a vital role in the study of quotient structures of different algebraic structures. Semigroups being one of the algebraic structures are sets with associative binary operation defined on them. Semigroup theory is one of such subject to determine and analyze equivalence relations in the sense that it could be easily understood. </strong></p><p><strong>This paper contains the quotient structures of semigroups by extending equivalence relations as congruences. We define different types of relations on the semigroups and prove they are equivalence, partial order, congruence or weakly separative congruence relations. </strong></p><p><strong>Keywords: Semigroup, binary relation, Equivalence and congruence relations. </strong></p><p><strong>I. </strong></p><p><strong>INTRODUCTION </strong></p><p>[1,2,3 and 4] Algebraic structures play a prominent role in mathematics with wide range of applications in science and engineering. A semigroup is one of the algebraic structure, a set with one binary operation satisfying the law of associativity. </p><p>The binary operation of a semigroup is most often denoted <a href="/goto?url=https://en.wikipedia.org/wiki/Multiplication" target="_blank">multiplicatively: </a><em>x</em>·<em>y</em>, or simply <em>xy</em>, denotes the result of applying the semigroup operation to the <a href="/goto?url=https://en.wikipedia.org/wiki/Ordered_pair" target="_blank">ordered pair(</a><em>x</em>, <em>y</em>). Associativity is formally expressed as that (<em>x</em>·<em>y</em>)·<em>z </em>= <em>x</em>·(<em>y</em>·<em>z</em>) for all <em>x</em>, <em>y </em>and <em>z </em>in the semigroup </p><p>A semigroup generalizes a <a href="/goto?url=https://en.wikipedia.org/wiki/Group_(mathematics)" target="_blank">group </a>by preserving only <a href="/goto?url=https://en.wikipedia.org/wiki/Group_(mathematics)#Definition" target="_blank">associativity and closure under the binary operation from the axioms </a><a href="/goto?url=https://en.wikipedia.org/wiki/Group_(mathematics)#Definition" target="_blank">defining a group </a>while omitting the requirement for an identity element and inverses. </p><p>The theory of semigroups is one of the relatively young branch of algebra.These algebraic structures are important in many areas of mathematics; for example: Coding and Language theory, Automata theory, Combinatorics and Mathematical analysis. </p><p>The theory of semigroups has been expanding greatly due to its extensive applications in many fields. <br>[6,7,8 and 15] This paper mainly deals with the equivalence relations and congruence relations on semigroups. [5]The relations are useful for understanding the nature of divisibility in a semigroup. [9,10,11,12,13 and 14] In particular Greens relations in semigroups characterizes the elements of a semigroup in terms of the principal ideals they generate. [1]According to J.M. Howie this concept was so all-pervading that a new semigroup can be encountered. </p><p><strong>Definitions</strong>: </p><p></p><p>A semigroup (S, .) is said to be <strong>commutative </strong>if it satisfies the identity for all in S A semigroup (S, .) is called <strong>regular </strong>if for each , there exist an element xS such that A semigroup (S, .) is called <strong>weakly separative, </strong>if x<sup style="top: -0.3797em;">2 </sup>= xy = y<sup style="top: -0.3797em;">2 </sup> x = y, x,yS. </p><p></p><p>Let S be a semigroup. We define two binary relations E(a), F(a) SS for every aS as </p><p><strong>467 | IJREAMV04I09045115 </strong></p><p><strong>DOI : 10.18231/2454-9150.2018.1223 </strong></p><p><strong>© 2018, IJREAM All Rights Reserved. </strong></p><p><strong>International Journal for Research in Engineering Application & Management (IJREAM) </strong><br><strong>ISSN : 2454-9150 Vol-04, Issue-09, Dec 2018 </strong></p><p>E(a)={(x,y)/ax = ay}, <br>F(a)= {(x,y)/xa = ya}, where x,y S </p><p>•</p><p>For a binary relation R SS, we have an element xS, the relation xR = {(xa,xb)/(a,b)R} </p><p>••</p><p>Similar way Rx can be defined. Conider a system (S,), where the relation “” satisfy the following axioms: </p><p>1. <strong>Reflexivity</strong>: a a </p><p>2. <strong>Symmetry</strong>: If a b then b a 3. <strong>Transitivity</strong>: If a b and b c then a c 4. <strong>Anti Symmetric</strong>: If a b and b a then a = b. For all a,b,cS </p><p>If (S,) satisfies (1),(2) and (3) then S is said to possess an <strong>Equivalence relation </strong>If (S,) satisfies (1),(3) and (4) then S is said to possess a <strong>Partial order relation. </strong>An equivalence relation with compatible conditions is a <strong>congruence </strong>relation. </p><p><strong>Theorem:1 The following relations hold good for a semigroup “S” where a,bS, </strong><br><strong>(i) E(b) E(ab) (ii) F(a) F(ab) (iii) bE(ab) E(a) (iv) F(ab)a F(b) </strong></p><p>Proof: (i) E(b) E(ab), a,bS <br>By def, E(b) = {(x,y)/ bx = by}, Also E(ab) = {(x,y)/abx = aby}, Now E(b) = {(x,y)/bx = by}, i.e., (x,y)E(b) bx = by <br> abx = aby , aS (x,y)E(ab) <br>Thus E(b) E(ab) </p><p>(ii) F(a) F(ab) <br>By def, F(a) = {(x,y)/xa = ya} <br>Also F(ab) = {(x,y)/xab = yab} Now F(a) = {(x,y)/xa = ya} i.e., (x,y)F(a) xa = ya <br> xab = yab , For some bS (x,y)F(ab) <br>Thus F(a) F(ab) <br>(iii) bE(ab) E(a) <br>We know E(ab) = {(x,y)/abx = aby}, bE(ab) = {(bx,by)/ abx = aby}, i.e., (bx,by) bE(ab) (x,y) E(ab) </p><p><strong>468 | IJREAMV04I09045115 </strong></p><p><strong>DOI : 10.18231/2454-9150.2018.1223 </strong></p><p><strong>© 2018, IJREAM All Rights Reserved. </strong></p><p><strong>International Journal for Research in Engineering Application & Management (IJREAM) </strong><br><strong>ISSN : 2454-9150 Vol-04, Issue-09, Dec 2018 </strong></p><p> abx = aby a(bx) = a(by) (bx,by) E(a) <br>Thus bE(ab) E(a) <br>(iv) F(ab)a F(b) <br>We know F(ab)= {(x,y)/xab = yab} F(ab)a= {(xa,ya)/xab = yab} i.e., (xa,ya) F(ab)a (x,y)F(ab) <br> xab = yab (xa)b = (ya) (xa,ya) F(b) Thus F(ab)a F(b) </p><p><strong>Theorem:2 Let us consider another relation SS satisfying the relations E(a) and F(a) such that </strong></p><p><strong> </strong></p><p><strong>E(a) = F(a) </strong></p><p>Proof: <br>Let (x,y) E(a) (x,y) & (x,y) E(a) <br> (x,y) & ax = ay……(1) <br>Let (x,y) F(a) (x,y) & (x,y) F(a) <br> (x,y) & xa = ya……(2) <br>From (1) &(2) <br>(x,y) & (x,y)E(a) (x,y) &(x,y) F(a) i.e., E(a) F(a) <br>Similarly F(a) E(a) <br>Thus E(a) = F(a) </p><p><strong>Theorem 3</strong>: <strong>Let (S, .) be regular and E(a), F(a) be two relations on S; then E(a) and F(a) are posets ,if (S,.) is commutative. </strong></p><p>Proof: <br>(1) We define E(a) on S by (x,y) E(a) ax = ay <br>Put y = x then ax = ax (x,x) E(a) <br>E(a) is reflexive <br>(2) (x,y) E(a) ax = ay and (y,x) E(a) ay = ax Now ax = ay xax = xay ; Also ay = ax yay = yax --- (a) Since S is regular xax = x; Now x = xay and y = yax <br>Also yay = y <br>[ From (a) and (b) ] <br>--- (b) <br>Since S is commutative , xay = yax </p><p><strong>469 | IJREAMV04I09045115 </strong></p><p><strong>DOI : 10.18231/2454-9150.2018.1223 </strong></p><p><strong>© 2018, IJREAM All Rights Reserved. </strong></p><p><strong>International Journal for Research in Engineering Application & Management (IJREAM) </strong><br><strong>ISSN : 2454-9150 Vol-04, Issue-09, Dec 2018 </strong></p><p>Thus we get x = xay = yax = y <br> x = y </p><p>Therefore, <em>E(a) is anti symmetric </em></p><p>(3) Let (x,y) E(a) and (y,z) E(a) i.e., ax = ay and ay = az <br> ax = ay =az ax = az (x,z) E(a) </p><p>Therefore, <em>E(a) is transitive </em></p><p> E(a) is a partial order relation on S Let (x,y) E(a) ax = ay (x, y) E(a) ax = ay </p><p> ax = ay </p><p> (S, E(a)) is a poset </p><p><strong>Theorem 4</strong>: <strong>E(a) and F(a) are equivalence relations </strong></p><p>Proof: <br>If (x,y) E(a) then ax = ay , aS Also If (x,y) F(a) then, xa = ya Since ax = ax we have (x,x) E(a) yS i.e., E(a) is reflexive Similarly F(a) is reflexive E(a) and F(a) are reflexive Suppose (x,y) E(a) ax = ay <br> ay = ax <br> (y,x) E(a) i.e., E(a) is symmetric Similarly F(a) is symmetric i.e., E(a) and F(a) are symmetric Now for (x,y) E(a) and (y,z) E(a) <br> ax = ay and ay = az ax = ay = az ax = az E(a) is transitive <br>Similarly, F(a) is also transitive i.e., E(a) and F(a) are transitive Therefore E(a) and F(a) are equivalence relations </p><p><strong>470 | IJREAMV04I09045115 </strong></p><p><strong>DOI : 10.18231/2454-9150.2018.1223 </strong></p><p><strong>© 2018, IJREAM All Rights Reserved. </strong></p><p><strong>International Journal for Research in Engineering Application & Management (IJREAM) </strong><br><strong>ISSN : 2454-9150 Vol-04, Issue-09, Dec 2018 </strong></p><p><strong>Theorem 5</strong>: <strong>E(a) and F(a) are congruence relations </strong></p><p>Proof: An equivalence relation with compatible conditions is a congruence relation <br>Now (x,y) E(a) (zx, zy) E(a) for z S and (xz, yz) F(a) i.e.,(x,y) E(a) ax = ay <br> z (ax) = z (ay) (za) x = (za) y (az) x = (az) y a (zx) = a (zy) (zx, zy) E(a) <br>Also (x,y) E(a) ax=ay <br> axz = ayz <br> (xz, yz) E(a) <br> E(a) is a congruence relation <br>Similarly F(a) is a congruence relation. <br>Thus E(a) and F(a) are congruence relations </p><p><strong>Theorem 6</strong>: <strong>E(a) is Weakly separative congruence relation</strong>: </p><p>i.e., To Prove, if x<sup style="top: -0.38em;">2 </sup>E(a) xy E(a) y<sup style="top: -0.38em;">2 </sup> x E(a) y <br>Proof: Now x<sup style="top: -0.38em;">2 </sup>E(a) xy a x<sup style="top: -0.38em;">2 </sup>= axy <br> a x x = a x y a x<sup style="top: -0.38em;">2 </sup>y = axy<sup style="top: -0.38em;">2 </sup><br> ay = ax <br>Also xy E(a) y<sup style="top: -0.38em;">2 </sup> a(xy) = ay<sup style="top: -0.38em;">2 </sup><br> axyx = a y<sup style="top: -0.38em;">2 </sup>x <br> ax<sup style="top: -0.38em;">2 </sup>y = a y<sup style="top: -0.38em;">2 </sup>x <br> ax=ay <br>Thus E(a) is Weakly separative congruence relation: </p><p><strong>Theorem 7: E(a) is Least Weakly separative congruence relation on S. </strong></p><p>Proof: Let „‟ be an arbitrary weakly separative congruence on S </p><p>such that axy<sup style="top: -0.38em;">m </sup> ay<sup style="top: -0.38em;">m+1 </sup>Let us take axy<sup style="top: -0.38em;">2 </sup>= ay<sup style="top: -0.38em;">3 </sup>axyy = a y<sup style="top: -0.38em;">2</sup>y a y<sup style="top: -0.38em;">2</sup>x = ay <br> ax = ay </p><p><strong>471 | IJREAMV04I09045115 </strong></p><p><strong>DOI : 10.18231/2454-9150.2018.1223 </strong></p><p><strong>© 2018, IJREAM All Rights Reserved. </strong></p><p><strong>International Journal for Research in Engineering Application & Management (IJREAM) </strong><br><strong>ISSN : 2454-9150 Vol-04, Issue-09, Dec 2018 </strong></p><p>This is true for m 2 <br>To prove it is true for m +1, Now let ay<sup style="top: -0.38em;">m+1 </sup>= ay<sup style="top: -0.38em;">m</sup>y </p><ul style="display: flex;"><li style="flex:1">= axy<sup style="top: -0.38em;">m-1 </sup></li><li style="flex:1">y</li></ul><p>ay<sup style="top: -0.38em;">m+1 </sup>= axy<sup style="top: -0.38em;">m </sup></p><p>i.e., y is weakly separative congruence „‟ with x. </p><p></p><ul style="display: flex;"><li style="flex:1">Also we have </li><li style="flex:1">ax<sup style="top: -0.38em;">m+1 </sup>= ayx<sup style="top: -0.38em;">m </sup></li></ul><p>i.e., ax<sup style="top: -0.38em;">m+1 </sup>= ax<sup style="top: -0.38em;">m</sup>x <br>= ayx<sup style="top: -0.38em;">m-1 </sup><br> ax<sup style="top: -0.38em;">m+1 </sup>= ayx<sup style="top: -0.38em;">m </sup>x</p><p>i.e., x is weakly separative congruence „‟ with x. </p><p>Thus we have E(a) <br>E(a) is Least Weakly separative congruence relation on S. </p><p><strong>II. </strong></p><p><strong>CONCLUSION </strong></p><p>In this paper we have proved different relations on semigroups such as Partial order, Equivalence, Congruence, Weakly separative congruence and Least Weakly separative congruence relations by using the binary relations E(a), F(a) and R. Also highlighted the regular and commutative property of semigroup. </p><p><strong>REFERENCES </strong></p><p>[1] Howie, J.M, An Introduction to Semigroup Theory. Academic Press, San Diego (1976). [2] Petrich, M. (1973). Introduction to semigroups (p. 198). Columbus: Merrill. [3] Clifford, A. H., Clifford, A. H., & Preston, G. B. (1961). The algebraic theory of semigroups (Vol. 7). American <br>Mathematical Soc.. </p><p>[4] Rudolf Lind L, Gunter Pilz, Applied Abstract Algebra , Springer science & Business media (1997) [5] Manavalan, L. J., & Romeo, P. G. (2018). On some semigroups generated from Cayley functions. Journal of Semigroup <br>Theory and Applications, 2018, Article-ID. <br>[6] Romano, Daniel A, Normally conjugative relations, Asian-European Journal of Mathematics, 10.02 (2017): 1750036. [7] Araújo, João, and Janusz Konieczny, Semigroups of transformations preserving an equivalence relation and a crosssection, Communications in Algebra, 32.5 (2004) <br>[8] Nagi Reddy. U, Shobhalatha.G, Ideals in regular po-Gamma Ternary Semigroups, 4(4), 2015, p.p. 684-687. [9] Huisheng, Pei, and Zou Dingyu, Green's equivalences on semigroups of transformations preserving order and an equivalence relation, Semigroup Forum. Vol. 71. No. 2. Springer-Verlag, (2005). </p><p>[10]Lei, S., & Huisheng, P. (2009, May). Green‟s relations on semigroups of transformations preserving two equivalence </p><p>relations. In Journal of Mathematical research and Exposition(Vol. 29, No. 3, pp. 415-422). <br>[11]Huisheng, P. (2005). Regularity and Green's relations for semigroups of transformations that preserve an equivalence. Communications in Algebra®, 33(1), 109-118. </p><p>[12]Sun, L., Pei, H., & Cheng, Z. (2007, June). Regularity and Green's relations for semigroups of transformations preserving orientation and an equivalence. In Semigroup Forum (Vol. 74, No. 3, pp. 473-486). Springer-Verlag. <br>[13]Meirki, L., & Steinfeld, O. (1974, March). A generalization of Green's relations in semigroups. In Semigroup Forum (Vol. <br>7, No. 1-4, pp. 74-85). Springer-Verlag. </p><p>[14]Zhao, P., & Yang, M. (2012). Regularity and Green's relations on semigroups of transformation preserving order and compression. Bulletin of the Korean Mathematical Society, 49(5), 1015-1025. <br>[15]Herzog, J. (1970). Generators and relations of abelian semigroups and semigroup rings. Manuscripta mathematica, 3(2), <br>175-193. </p><p><strong>472 | IJREAMV04I09045115 </strong></p><p><strong>DOI : 10.18231/2454-9150.2018.1223 </strong></p><p><strong>© 2018, IJREAM All Rights Reserved. </strong></p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages6 Page
-
File Size-