Statistical Analysis of Corpus Data with R a Short Introduction to Regression and Linear Models

Statistical Analysis of Corpus Data with R a Short Introduction to Regression and Linear Models

Statistical Analysis of Corpus Data with R A short introduction to regression and linear models Designed by Marco Baroni1 and Stefan Evert2 1Center for Mind/Brain Sciences (CIMeC) University of Trento 2Institute of Cognitive Science (IKW) University of Onsabr¨uck Baroni & Evert (Trento/Osnabr¨uck) SIGIL: Linear Models 1 / 15 Outline Outline 1 Regression Simple linear regression General linear regression 2 Linear statistical models A statistical model of linear regression Statistical inference 3 Generalised linear models Baroni & Evert (Trento/Osnabr¨uck) SIGIL: Linear Models 2 / 15 Least-squares regression minimizes prediction error n X 2 Q = yi − (β0 + β1xi ) i=1 for data points (x1; y1);:::; (xn; yn) Regression Simple linear regression Linear regression Can random variable Y be predicted from r. v. X ? + focus on linear relationship between variables Linear predictor: Y ≈ β0 + β1 · X I β0 = intercept of regression line I β1 = slope of regression line Baroni & Evert (Trento/Osnabr¨uck) SIGIL: Linear Models 3 / 15 Regression Simple linear regression Linear regression Can random variable Y be predicted from r. v. X ? + focus on linear relationship between variables Linear predictor: Y ≈ β0 + β1 · X I β0 = intercept of regression line I β1 = slope of regression line Least-squares regression minimizes prediction error n X 2 Q = yi − (β0 + β1xi ) i=1 for data points (x1; y1);:::; (xn; yn) Baroni & Evert (Trento/Osnabr¨uck) SIGIL: Linear Models 3 / 15 Mathematical derivation of regression coefficients I minimum of Q(β0; β1) satisfies @Q=@β0 = @Q=@β1 = 0 I leads to normal equations (system of 2 linear equations) n n n Xˆ ˜ X X −2 yi − (β0 + β1xi ) = 0 § β0n + β1 xi = yi i=1 i=1 i=1 n n n n X ˆ ˜ X X 2 X −2 xi yi − (β0 + β1xi ) = 0 § β0 xi + β1 xi = xi yi i=1 i=1 i=1 i=1 I regression coefficients = unique solution β^0; β^1 Regression Simple linear regression Simple linear regression Coefficients of least-squares line Pn ^ i=1 xi yi − nxny n β1 = Pn 2 2 i=1 xi − nxn ^ ^ β0 = y n − β1xn Baroni & Evert (Trento/Osnabr¨uck) SIGIL: Linear Models 4 / 15 Regression Simple linear regression Simple linear regression Coefficients of least-squares line Pn ^ i=1 xi yi − nxny n β1 = Pn 2 2 i=1 xi − nxn ^ ^ β0 = y n − β1xn Mathematical derivation of regression coefficients I minimum of Q(β0; β1) satisfies @Q=@β0 = @Q=@β1 = 0 I leads to normal equations (system of 2 linear equations) n n n Xˆ ˜ X X −2 yi − (β0 + β1xi ) = 0 § β0n + β1 xi = yi i=1 i=1 i=1 n n n n X ˆ ˜ X X 2 X −2 xi yi − (β0 + β1xi ) = 0 § β0 xi + β1 xi = xi yi i=1 i=1 i=1 i=1 I regression coefficients = unique solution β^0; β^1 Baroni & Evert (Trento/Osnabr¨uck) SIGIL: Linear Models 4 / 15 Pearson correlation = amount of variation \explained" by X 2 Pn 2 2 Sresid i=1(yi − β0 − β1xi ) R = 1 − 2 = 1 − Pn 2 Sy i=1(yi − y n) + correlation vs. slope of regression line 2 R = β^1(y ∼ x) · β^1(x ∼ y) Regression Simple linear regression The Pearson correlation coefficient Measuring the \goodness of fit” of the linear prediction 2 I variation among observed values of Y = sum of squares Sy I closely related to (sample estimate for) variance of Y n 2 X 2 Sy = (yi − y n) i=1 2 I residual variation wrt. linear prediction: Sresid = Q Baroni & Evert (Trento/Osnabr¨uck) SIGIL: Linear Models 5 / 15 Regression Simple linear regression The Pearson correlation coefficient Measuring the \goodness of fit” of the linear prediction 2 I variation among observed values of Y = sum of squares Sy I closely related to (sample estimate for) variance of Y n 2 X 2 Sy = (yi − y n) i=1 2 I residual variation wrt. linear prediction: Sresid = Q Pearson correlation = amount of variation \explained" by X 2 Pn 2 2 Sresid i=1(yi − β0 − β1xi ) R = 1 − 2 = 1 − Pn 2 Sy i=1(yi − y n) + correlation vs. slope of regression line 2 R = β^1(y ∼ x) · β^1(x ∼ y) Baroni & Evert (Trento/Osnabr¨uck) SIGIL: Linear Models 5 / 15 Regression General linear regression Multiple linear regression Linear regression with multiple predictor variables Y ≈ β0 + β1X1 + ··· + βk Xk minimises n X 2 Q = yi − (β0 + β1xi1 + ··· + βk xik ) i=1 for data points x11;:::; x1k ; y1 ;:::; xn1;:::; xnk ; yn Multiple linear regression fits n-dimensional hyperplane instead of regression line Baroni & Evert (Trento/Osnabr¨uck) SIGIL: Linear Models 6 / 15 Regression General linear regression Multiple linear regression: The design matrix Matrix notation of linear regression problem y ≈ Zβ \Design matrix" Z of the regression data 2 3 1 x11 x12 ··· x1k 61 x21 x22 ··· x2k 7 Z = 6 7 6. 7 4. 5 1 xn1 xn2 ··· xnk 0 y = y1 y2 ::: yn 0 β = β0 β1 β2 : : : βk + A0 denotes transpose of a matrix; y; β are column vectors Baroni & Evert (Trento/Osnabr¨uck) SIGIL: Linear Models 7 / 15 System of normal equations satisfying rβ Q = 0: Z0Zβ = Z0y Leads to regression coefficients β^ = (Z0Z)−1Z0y Regression General linear regression General linear regression Matrix notation of linear regression problem y ≈ Zβ Residual error Q = (y − Zβ)0(y − Zβ) Baroni & Evert (Trento/Osnabr¨uck) SIGIL: Linear Models 8 / 15 Leads to regression coefficients β^ = (Z0Z)−1Z0y Regression General linear regression General linear regression Matrix notation of linear regression problem y ≈ Zβ Residual error Q = (y − Zβ)0(y − Zβ) System of normal equations satisfying rβ Q = 0: Z0Zβ = Z0y Baroni & Evert (Trento/Osnabr¨uck) SIGIL: Linear Models 8 / 15 Regression General linear regression General linear regression Matrix notation of linear regression problem y ≈ Zβ Residual error Q = (y − Zβ)0(y − Zβ) System of normal equations satisfying rβ Q = 0: Z0Zβ = Z0y Leads to regression coefficients β^ = (Z0Z)−1Z0y Baroni & Evert (Trento/Osnabr¨uck) SIGIL: Linear Models 8 / 15 Regression General linear regression General linear regression Predictor variables can also be functions of the observed variables § regression only has to be linear in coefficients β E.g. polynomial regression with design matrix 2 2 k 3 1 x1 x1 ··· x1 2 k 61 x2 x2 ··· x2 7 Z = 6 7 6. 7 4. 5 2 k 1 xn xn ··· xn corresponding to regression model 2 k Y ≈ β0 + β1X + β2X + ··· + βk X Baroni & Evert (Trento/Osnabr¨uck) SIGIL: Linear Models 9 / 15 Mathematical notation: 2 Y j x1;:::; xk ∼ N β0 + β1x1 + ··· + βk xk ; σ Assumptions I error terms i are i.i.d. (independent, same distribution) I error terms follow normal (Gaussian) distributions 2 I equal (but unknown) variance σ = homoscedasticity Linear statistical models A statistical model of linear regression Linear statistical models Linear statistical model ( = random error) Y = β0 + β1x1 + ··· + βk xk + ∼ N(0; σ2) + x1;:::; xk are not treated as random variables! 2 I ∼ = \is distributed as"; N(µ, σ ) = normal distribution Baroni & Evert (Trento/Osnabr¨uck) SIGIL: Linear Models 10 / 15 Assumptions I error terms i are i.i.d. (independent, same distribution) I error terms follow normal (Gaussian) distributions 2 I equal (but unknown) variance σ = homoscedasticity Linear statistical models A statistical model of linear regression Linear statistical models Linear statistical model ( = random error) Y = β0 + β1x1 + ··· + βk xk + ∼ N(0; σ2) + x1;:::; xk are not treated as random variables! 2 I ∼ = \is distributed as"; N(µ, σ ) = normal distribution Mathematical notation: 2 Y j x1;:::; xk ∼ N β0 + β1x1 + ··· + βk xk ; σ Baroni & Evert (Trento/Osnabr¨uck) SIGIL: Linear Models 10 / 15 Linear statistical models A statistical model of linear regression Linear statistical models Linear statistical model ( = random error) Y = β0 + β1x1 + ··· + βk xk + ∼ N(0; σ2) + x1;:::; xk are not treated as random variables! 2 I ∼ = \is distributed as"; N(µ, σ ) = normal distribution Mathematical notation: 2 Y j x1;:::; xk ∼ N β0 + β1x1 + ··· + βk xk ; σ Assumptions I error terms i are i.i.d. (independent, same distribution) I error terms follow normal (Gaussian) distributions 2 I equal (but unknown) variance σ = homoscedasticity Baroni & Evert (Trento/Osnabr¨uck) SIGIL: Linear Models 10 / 15 Log-likelihood has a familiar form: n 1 X log Pr(y j x) = C − (y − β − β x )2 / Q 2σ2 i 0 1 i i=1 ¯ MLE parameter estimates β^0; β^1 from linear regression Linear statistical models A statistical model of linear regression Linear statistical models Probability density function for simple linear model " n # 1 1 X Pr(y j x) = · exp − (y − β − β x )2 (2πσ2)n=2 2σ2 i 0 1 i i=1 I y = (y1;:::; yn) = observed values of Y (sample size n) I x = (x1;:::; xn) = observed values of X Baroni & Evert (Trento/Osnabr¨uck) SIGIL: Linear Models 11 / 15 Linear statistical models A statistical model of linear regression Linear statistical models Probability density function for simple linear model " n # 1 1 X Pr(y j x) = · exp − (y − β − β x )2 (2πσ2)n=2 2σ2 i 0 1 i i=1 I y = (y1;:::; yn) = observed values of Y (sample size n) I x = (x1;:::; xn) = observed values of X Log-likelihood has a familiar form: n 1 X log Pr(y j x) = C − (y − β − β x )2 / Q 2σ2 i 0 1 i i=1 ¯ MLE parameter estimates β^0; β^1 from linear regression Baroni & Evert (Trento/Osnabr¨uck) SIGIL: Linear Models 11 / 15 Parameter estimates β^0; β^1;::: are random variables I t-tests (H0 : βj = 0) and confidence intervals for βj I confidence intervals for new predictions Categorical factors: dummy-coding with binary variables I e.g.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    28 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us