An Ontology Driven Knowledge Discovery Framework for Dynamic

An Ontology Driven Knowledge Discovery Framework for Dynamic

An Ontology Driven Knowledge Discovery Framework for Dynamic Domains: Methodology, Tools and a Biomedical Case. Paulo Gottgtroy A thesis submitted to Auckland University of Technology in fulfilment of the requirements for the degree of Doctor of Philosophy (PhD) 2010 School of Computing and Mathematical Sciences Primary Supervisor: Prof. Nikola Kasabov Co-supervisor: Prof. Stephen MacDonell i Table of Contents INTRODUCTION ....................................................................................................................... 1 1.1. INTRODUCTION ............................................................................................................. 1 1.2. RESEARCH QUESTIONS .................................................................................................. 5 1.3. RESEARCH METHODOLOGY .......................................................................................... 8 1.3.1. Detailed Research Process ............................................................................... 12 1.4. SCOPE OF THE RESEARCH ............................................................................................ 16 1.4.1. Implementation Environment ........................................................................... 19 1.4.2. Requirements Identification .............................................................................. 23 1.5. SUMMARY .................................................................................................................. 28 CHAPTER 2 RESEARCH LITERATURE REVIEW ....................................................... 31 2.1. INTRODUCTION ........................................................................................................... 31 2.2. ELEMENTS OF THE RESEARCH ..................................................................................... 32 2.2.1. Ontology ........................................................................................................... 32 2.2.2. Ontology Engineering ...................................................................................... 34 2.2.3. Knowledge discovery in databases ................................................................... 37 2.2.4. Knowledge Discovery Life Cycle ...................................................................... 41 2.2.5. Ontology and Knowledge Discovery ................................................................ 45 2.2.6. Domain Knowledge and KDD .......................................................................... 49 2.2.7. Ontologies, Data Models and Data Warehouses ............................................. 52 2.2.8. Ontology and KDD integration ........................................................................ 54 2.2.9. Understanding Change ..................................................................................... 56 2.2.10. Ontology Engineering and Ontology Change .................................................. 59 2.2.11. Flexibility vs. formalism ................................................................................... 61 2.2.12. The Ontology Environment - Protégé Editor.................................................... 65 2.3. SUMMARY .................................................................................................................. 68 ii CHAPTER 3 A NOVEL META-KNOWLEDGE MODEL FOR EVOLVING ONTOLOGY 69 3.1. INTRODUCTION ........................................................................................................... 70 3.2. DEFINITION OF EVOLVING ONTOLOGY ....................................................................... 71 3.3. EVOLVING ONTOLOGY META-KNOWLEDGE ............................................................... 76 3.3.1. EO-Concept_Meta-data ................................................................................... 78 3.3.2. Evolving_Ontology_Meta-Class ....................................................................... 86 3.3.3. Model Integration ............................................................................................. 90 3.3.4. Knowledge Map ................................................................................................ 92 3.4. BIOMEDICAL ONTOLOGY CASE STUDY ON LEUKAEMIA CANCER DATA ...................... 97 3.4.1. The Leukaemia Gene Regulatory Network Map ............................................. 104 3.5. NUTRIGENOMICS EVOLVING ONTOLOGY CASE STUDY............................................... 107 3.6. SUMMARY ................................................................................................................ 109 CHAPTER 4 A METHODOLOGY FOR KNOWLEDGE DISCOVERY FROM EVOLVING ONTOLOGY ................................................................................................................ 112 4.1. INTRODUCTION ......................................................................................................... 113 4.2. ONTOLOGY DRIVEN KNOWLEDGE DISCOVERY - ODKD .......................................... 113 4.2.1. Ontology Preparation ..................................................................................... 121 4.2.2. Ontology Analysis ........................................................................................... 133 4.2.3. Instance Preparation ...................................................................................... 139 4.2.4. Modelling ....................................................................................................... 144 4.2.5. Evaluation ...................................................................................................... 146 4.3. SUMMARY ................................................................................................................ 150 CHAPTER 5 ONTOLOGY DRIVEN KNOWLEDGE DISCOVERY IMPLEMENTATION FRAMEWORK ........................................................................................... 155 5.1. INTRODUCTION ......................................................................................................... 156 5.1.1. Research methodology.................................................................................... 158 5.2. ODKD IMPLEMENTATION FRAMEWORK .................................................................. 162 iii 5.2.1. System Architecture ........................................................................................ 163 5.2.2. Ontology Preparation ..................................................................................... 167 5.2.3. Ontology Analysis ........................................................................................... 176 5.2.4. Instance Preparation ...................................................................................... 186 5.2.5. Modelling ....................................................................................................... 200 5.2.6. Evaluation ...................................................................................................... 201 5.3. SUMMARY ................................................................................................................ 203 CHAPTER 6 BIOMEDICAL APPLICATION ................................................................. 208 6.1. INTRODUCTION ......................................................................................................... 209 6.2. CASE STUDY LIFE CYCLE ........................................................................................... 211 6.3. THE BRAIN GENE ONTOLOGY - BGO ....................................................................... 213 6.3.1. Biomedical Informatics Sources ..................................................................... 215 6.3.2. Brain Gene Ontology Design Criteria ............................................................ 221 6.4. A GENERIC COMPUTATIONAL NEUROGENETIC (CNG) MODEL ................................... 229 6.4.1. Determination of the GN transition matrix W ................................................ 233 6.4.2. Model defined GN corresponding to the desired NN behaviour .................... 235 6.5. A CNG MODEL OF A SPIKING NEURAL NETWORK (SNN) MODEL DESCRIPTION ...... 236 6.5.1. Some preliminary experimental results .......................................................... 240 6.6. A BIOMEDICAL KNOWLEDGE DISCOVERY TOOL – BGO SYSTEM............................. 244 6.6.1. CNGM simulation results ............................................................................... 246 6.6.2. Importing Gene Regulatory Network data ..................................................... 251 6.7. SUMMARY ................................................................................................................ 254 CHAPTER 7 EVALUATION OF RESEARCH ............................................................... 258 7.1. INTRODUCTION ......................................................................................................... 258 7.2. DESIGN SCIENCE ....................................................................................................... 260 7.3. SYSTEM DEVELOPMENT ........................................................................................... 263 7.3.1. Knowledge Representation ............................................................................. 266 7.3.2. Conceptual Framework .................................................................................. 267 7.3.3. Ontology Driven Methodology ....................................................................... 268 iv 7.3.4. Ontology

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    370 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us