Logarithmic Extensions of Local Scale-Invariance

Logarithmic Extensions of Local Scale-Invariance

Logarithmic extensions of local scale-invariance Malte Henkel Groupe de Physique Statistique D´epartement de Physique de la Mati`ereet des de Mat´eriaux Institut Jean Lamour CNRS { Nancy - Universit´e,France J.D. Noh (KIAS & University of S´eoul- Cor´ee) M. Pleimling (Virginia Tech - E.U.A)´ arxiv:1009.4139, arxiv:1109.5022 Atelier: Logarithmic CFT and representation theory, Programme `Advanced conformal field-theory and application', Institut Henri Poincar´e,Paris, octobre 2011 Overview : 1. Critical phenomena 2. Ageing phenomena 3. Critical contact process (dp universality class) 4. Surface growth (kpz universality class) 5. Form of the scaling functions & lsi 6. Logarithmic conformal invariance 7. Logarithmic ageing invariance 8. Numerical experiments (dp and kpz classes in 1D) 9. Conclusions 1. Critical phenomena Equilibrium critical phenomena : scale-invariance For sufficiently local interactions : extend to conformal invariance space-dependent re-scaling (angles conserved) r 7! r=b(r) Bateman & Cunningham 1909/10, Polyakov 70 In two dimensions : 1 many conformal transformations (w 7! f (w) analytic) ) exact predictions for critical exponents, correlators, . BPZ 84 What about time-dependent critical phenomena ? Cardy 85 Characterised by dynamical exponent z : t 7! tb−z , r 7! rb−1 Can one extend to local dynamical scaling, with z 6= 1? If z = 2, the Schr¨odingergroup is an example : Jacobi 1842, Lie 1881 αt + β Dr + vt + a t 7! ; r 7! ; αδ − βγ = 1 γt + δ γt + δ ) study ageing phenomena as paradigmatic example 2. Ageing phenomena known & practically used since prehistoric times (metals, glasses) systematically studied in physics since the 1970s Struik '78 occur in widely different systems (structural glasses, spin glasses, polymers, simple magnets, . ) Three defining properties of ageing : 1 slow relaxation (non-exponential !) 2 no time-translation-invariance (tti) 3 dynamical scaling without fine-tuning of parameters Most existing studies on `magnets' : relaxation towards equilibrium Question : what can be learned about intrisically irreversible systems by studying their ageing behaviour? t = t1 t = t2 > t1 magnet T < Tc −! ordered cluster magnet T = Tc −! correlated cluster critical contact process =) cluster dilution voter model, contact process,. common feature : growing length scale L(t) ∼ t1=z z : dynamical exponent Two-time observables time-dependent order-parameter φ(t; r) two-time correlator C(t; s) := hφ(t; r)φ(s; r)i − hφ(t; r)i hφ(s; r)i δ hφ(t; r)i D E two-time response R(t; s) := = φ(t; r)φe(s; r) δh(s; r) h=0 t : observation time, s : waiting time Scaling regime : t; s τmicro and t − s τmicro t t C(t; s) = s−bf ; R(t; s) = s−1−af C s R s −λ =z −λ =z asymptotics (for y 1) : fC (y) ∼ y C , fR (y) ∼ y R λC : autocorrelation exponent, λR : autoresponse exponent, z : dynamical exponent, a; b : ageing exponents 3. Critical contact process (directed percolation) p 1 (a) contact process : A −! 2A, A −! ; + diffusion Harris 74 (b) percolation problem with preferred( k) direction Broadbent & Hammersley 57 (c) Reggeon field theory Cardy & Sugar 80 absorbing (= non-equilibrium) stationary state β −β/ν particle density: stat. a1 = hAi ∼ (p − pc) ; critical a(t) ∼ t k −νk −ν? relaxation time τ = ξk ∼ jp − pcj ; correlation length ξ? ∼ jp − pcj dynamical exponent z = νk/ν? Effective action at criticality Janssen, de Dominicis 70s-80s Z h 2 i J [φ,e φ] = dtdr φe D@t φ − r φ − κφe φe − φ φ rapidity-reversal symmetry : J is invariant under Grassberger 79, Janssen 81 t 7! −t ; φ(t; r) 7! −φe(−t; r) ; φe(t; r) 7! −φ(−t; r) active (ordered) phase : limt!1 a(t) = ρ1 > 0 absorbing (disordered) phase : limt!1 a(t) = 0 long-time behaviour in the active phase of the 1D contact process 8 9 < fast relaxation = contrast to magnets : no scaling in active phase : time-translation-inv. ; reason : single non-critical stationary state Enss, mh, Picone, Schollwock¨ 04 ageing and scaling for C(t; s): critical contact process main figures : 1D, insets : 2D Ramasco, mh, Santos, da Silva Santos 04 ; Enss et al. 04 8 < slow dynamics observe all 3 properties of ageing : no tti : dynamical scaling contrast to critical magnets : a 6= b =) no finite FDR ! autocorrelation exponent : λC = d + z + β/ν? Calabrese, Gambassi, Krzakala 06/07, Baumann & Gambassi 07 numerical values of some non-equilibrium exponents contact process (cp) A ! 2A; A !;, parity-conserved model (pc) A $ 3A; 2A !;, diffusion-coagulation (dc)2 A ! A d a b λC =z λR =z cp 1 −0:68(5) 0:32(5) 1:85(10) 1:85(10) tmrg [1] −0:57(10) 0:3189 1:9(1) 1:9(1) mc [2] −0:6810 1:76(5) mc [3] −0:6810 0:3189 1:7921 1:7921 scal [5] 2 0.3(1) 0:901(2) 2:8(3) 2:75(10) mc [2] −0:198(2) 0:901(2) 2:58(2) 2:58(2) scal [5] 0:9(1) 2:5(1) exp [6] > 4 d=2 − 1 d=2 d=2 + 2 mf [2] pc 1 −0:430(4) 0:570(4) 1:9(1) 1:9(2) mc [4] −0:430(4) 0:570(4) 1:86(1) 1:86(1) scal dc 1 −1=2 1 2 2 exact [7] [1] Enss et. al. 04 ; [2] Ramasco et. al. 04 ; [3] Hinrichsen 06 ; [4] Odor´ 06 ; [5] Baumann & Gambassi 07 ; [6] Takeuchi et. al. 09 ; [7] Durang, Fortin, mh 11 in the contact process 1+ a = b : (= rapidity-reversal symmetry of stationary state of cp ) specific property ! why does 1 + a = b also hold in the pc class ? =) try new form of FDR ! Enss et. al. 04 ; Baumann & Gambassi 07 R(t; s) fR (t=s) Ξ(t; s) := = ; Ξ1 := lim lim Ξ(t; s) C(t; s) fC (t=s) s!1 t!1 1 universal function, Ξ 6= 0 measures distance to stationary state in d = 4 − " dimensions, from an one-loop calculation B & G 07 119 π2 Ξ = 2 1 − " − + O("2) 1 480 120 quantitatively consistent with tmrg estimateΞ 1 = 1:15(5) in 1D. NB : 1 + a = b invalid in other non-equilibrium universality classes ) need different forms of fdr ! Baumann et. al. 05 ; Durang & mh 09, Durang et al. 11 4. Surface growth deposition (evaporation) of particles on a surface ! height profile h(t; r) generic situation : RSOS (restricted solid-on-solid) model Kim & Kosterlitz 89 p = deposition prob. 1 − p = evap. prob. here p = 0:98 some universality classes : 2 µ 2 (a) KPZ @t h = νr h + 2 (rh) + η Kardar,Parisi,Zhang 86 2 (b)EW @t h = νr h + η Edwards,Wilkinson 82 4 (c)MH @t h = −νr h + η Mullins,Herring 63 ; Wolf & Villain 80 η is a gaussian white noise with hη(t; r)η(t0; r0)i = 2νT δ(t − t0)δ(r − r0) d −d P Family-Viscek scaling on a spatial lattice of extent L : h(t) = L j hj (t) Ld 1 X D 2E L2ζ ; if tL−z 1 w 2(t; L) = h (t) − h(t) = L2ζ f tL−z ∼ Ld j t2β ; if tL−z 1 j=1 β : growth exponent, ζ : roughness exponent, ζ = βz two-time correlator : t r C(t; s; r) = hh(t; r)h(s; 0)i − h(t) h(s) = s−bF ; C s s1=z with ageing exponent : b = −2β Kallabis & Krug 96 two-time integrated response : * sample A with deposition rates pi = p ± i , up to time s, * sample B with pi = p up to time s ; then switch to common dynamics pi = p for all times t > s Z s L *h(A) (t; s) − h(B) (t)+ z 1 X j+r j+r −a t jrj χ(t; s; r) = du R(t; u; r) = = s Fχ ; L j s s 0 j=1 Effective action of the KPZ equation : Z h 2 µ 2 2i J [φ, φe] = dtdr φe @t φ − νr φ − (rφ) − νT φe 2 =) Very special properties of KPZ in d = 1 spatial dimension ! Exact critical exponents β = 1=3, ζ = 1=2, z = 3=2, λC = 1 kpz 86 ; Krech 97 @φ @ v Special KPZ symmetry in1 D : let v = @r , φe = @r ep + 2T Z h ν µ i J = dtdr p@ v − (@ v)2 − v 2@ p + νT (@ p)2 e t 4T r 2 r e r e is invariant under time-reversal Lvov, Lebedev, Paton, Procaccia 93 ; Frey, Tauber,¨ Hwa 96 t 7! −t ; v(t; r) 7! −v(−t; r) ; ep 7! +ep(−t; r) 2 ) fluctuation-dissipation relation for t sTR (t; s; r) = −@r C(t; s; r) 2 find ageing exponents : λR = λC = 1,1+ a = b + z 1D relaxation dynamics, starting from an initially flat interface 8 < slow dynamics observe all 3 properties of ageing : no tti : dynamical scaling confirm expected exponents b = −2=3, λC =z = 2=3 N.B. : this confirmation is out of the stationary state Kallabis & Krug 96 ; Krech 97 ; Bustingorry et al. 07-10 ; Chou & Pleimling 10 ; D'Aquila & Tauber¨ 11 relaxation of the integrated response,1D 8 < slow dynamics observe all 3 properties of ageing : no tti : dynamical scaling exponents a = −1=3, λR =z = 2=3, as expected from FDR N.B. : numerical tests for 2 models in KPZ class Simple ageing is also seen in space-time observables 2=3 t r 3=2 correlator C(t; s; r) = s FC s ; s 1=3 t r 3=2 integrated response χ(t; s; r) = s Fχ s ; s confirm expected value of dynamical exponent z = 3=2 Values of some growth and ageing exponents in 1D model z a b λR = λC β ζ KPZ 3=2 −1=3 −2=3 1 1=3 1=2 exp 0:336(11) 0:50(5) EW 2 −1=2 −1=2 1 1=4 1=2 MH 4 −3=4 −3=4 1 3=8 3=2 Takeuchi, Sano, Sasamoto, Spohn 10/11 Two-time space-time responses and correlators consistent with simple ageing for 1D KPZ Similar results known for EW and MH universality classes Roethlein, Baumann, Pleimling 06 5.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    44 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us