Linear Algebra Review

Linear Algebra Review

Linear Programming Lecture 1: Linear Algebra Review Lecture 1: Linear Algebra Review Linear Programming 1 / 24 1 Linear Algebra Review 2 Linear Algebra Review 3 Block Structured Matrices 4 Gaussian Elimination Matrices 5 Gauss-Jordan Elimination (Pivoting) Lecture 1: Linear Algebra Review Linear Programming 2 / 24 Matrices in Rm×n A 2 Rm×n columns rows 2 3 2 3 a11 a12 ::: a1n a1• 6 a21 a22 ::: a2n 7 6 a2• 7 A = 6 7 = a a ::: a = 6 7 6 . .. 7 •1 •2 •n 6 . 7 4 . 5 4 . 5 am1 am2 ::: amn am• 2 3 2 T 3 a11 a21 ::: am1 a•1 T 6 a12 a22 ::: am2 7 6 a•2 7 AT = 6 7 = 6 7 = aT aT ::: aT 6 . .. 7 6 . 7 1• 2• m• 4 . 5 4 . 5 T a1n a2n ::: amn a•n Lecture 1: Linear Algebra Review Linear Programming 3 / 24 Matrix Vector Multiplication A column space view of matrix vector multiplication. 2 a11 a12 ::: a1n 3 2 x1 3 2 a11 3 2 a12 3 2 a1n 3 6 a21 a22 ::: a2n 7 6 x2 7 6 a21 7 6 a22 7 6 a2n 7 6 7 6 7 = x 6 7+ x 6 7+ ··· + x 6 7 6 . .. 7 6 . 7 1 6 . 7 2 6 . 7 n 6 . 7 4 . 5 4 . 5 4 . 5 4 . 5 4 . 5 am1 am2 ::: amn xn am1 am2 amn = x1 a•1 + x2 a•2 + ··· + xn a•n A linear combination of the columns. Lecture 1: Linear Algebra Review Linear Programming 4 / 24 The Range of a Matrix Let A 2 Rm×n (an m × n matrix having real entries). Range of A m n Ran (A) = fy 2 R j 9 x 2 R such that y = Ax g Ran (A) = the linear span of the columns of A Lecture 1: Linear Algebra Review Linear Programming 5 / 24 Two Special Subspaces n Let v1;:::; vk 2 R . The linear span of v1;:::; vk : Span [v1;:::; vk ] = fy j y = ξ1v1 + ξ2v2 + ··· + ξk vk ; ξ1; : : : ; ξk 2 Rg The subspace orthogonal to v1;:::; vk : ? n fv1;:::; vk g = fz 2 R j z • vi = 0; i = 1;:::; k g ? ? Facts: fv1;:::; vk g = Span [v1;:::; vk ] ? h ?i Span [v1;:::; vk ] = Span [v1;:::; vk ] Lecture 1: Linear Algebra Review Linear Programming 6 / 24 Matrix Vector Multiplication A row space view of matrix vector multiplication. 2 3 2 3 2 3 2 Pn 3 a11 a12 ::: a1n x1 a1• • x i=1 a1i xi Pn 6 a21 a22 ::: a2n 7 6 x2 7 6 a2• • x 7 6 i=1 a2i xi 7 6 7 6 7 = 6 7 = 6 7 6 . .. 7 6 . 7 6 . 7 6 . 7 4 . 5 4 . 5 4 . 5 4 . 5 Pn am1 am2 ::: amn xn am• • x i=1 ami xi The dot product of x with the rows of A. Lecture 1: Linear Algebra Review Linear Programming 7 / 24 Fundamental Theorem of the Alternative: ? ? Nul (A) = Ran AT Ran (A) = Nul AT The Null Space of a Matrix Let A 2 Rm×n (an m × n matrix having real entries). Null Space of A n Nul (A) = fx 2 R j Ax = 0g Nul (A) = subspace orthogonal to the rows of A ? = Span [a1•; a2•;:::; am•] ? = Ran AT Lecture 1: Linear Algebra Review Linear Programming 8 / 24 The Null Space of a Matrix Let A 2 Rm×n (an m × n matrix having real entries). Null Space of A n Nul (A) = fx 2 R j Ax = 0g Nul (A) = subspace orthogonal to the rows of A ? = Span [a1•; a2•;:::; am•] ? = Ran AT Fundamental Theorem of the Alternative: ? ? Nul (A) = Ran AT Ran (A) = Nul AT Lecture 1: Linear Algebra Review Linear Programming 8 / 24 2 3 −4 1 1 0 0 3 6 2 2 0 0 1 0 7 6 7 B I3×3 =6 −1 0 0 0 0 1 7= 6 7 02×3 C 4 0 0 0 2 1 4 5 0 0 0 1 0 3 where 2 3 −4 1 3 2 1 4 B = 2 2 0 ; C = 4 5 1 0 3 −1 0 0 Block Structured Matrices 2 3 −4 1 1 0 0 3 6 2 2 0 0 1 0 7 6 7 A=6 −1 0 0 0 0 1 7 6 7 4 0 0 0 2 1 4 5 0 0 0 1 0 3 Lecture 1: Linear Algebra Review Linear Programming 9 / 24 B I = 3×3 02×3 C where 2 3 −4 1 3 2 1 4 B = 2 2 0 ; C = 4 5 1 0 3 −1 0 0 Block Structured Matrices 2 3 −4 1 1 0 0 3 2 3 −4 1 1 0 0 3 6 2 2 0 0 1 0 7 6 2 2 0 0 1 0 7 6 7 6 7 A=6 −1 0 0 0 0 1 7=6 −1 0 0 0 0 1 7 6 7 6 7 4 0 0 0 2 1 4 5 4 0 0 0 2 1 4 5 0 0 0 1 0 3 0 0 0 1 0 3 Lecture 1: Linear Algebra Review Linear Programming 9 / 24 Block Structured Matrices 2 3 −4 1 1 0 0 3 2 3 −4 1 1 0 0 3 6 2 2 0 0 1 0 7 6 2 2 0 0 1 0 7 6 7 6 7 B I3×3 A=6 −1 0 0 0 0 1 7=6 −1 0 0 0 0 1 7= 6 7 6 7 02×3 C 4 0 0 0 2 1 4 5 4 0 0 0 2 1 4 5 0 0 0 1 0 3 0 0 0 1 0 3 where 2 3 −4 1 3 2 1 4 B = 2 2 0 ; C = 4 5 1 0 3 −1 0 0 Lecture 1: Linear Algebra Review Linear Programming 9 / 24 Can we exploit the structure of A? Multiplication of Block Structured Matrices Consider the matrix product AM, where 2 1 2 3 2 3 −4 1 1 0 0 3 0 4 2 2 0 0 1 0 6 7 6 7 6 −1 −1 7 A = 6 −1 0 0 0 0 1 7 and M = 6 7 6 7 6 2 −1 7 6 0 0 0 2 1 4 7 6 7 4 5 6 4 3 7 0 0 0 1 0 3 4 5 −2 0 Lecture 1: Linear Algebra Review Linear Programming 10 / 24 Multiplication of Block Structured Matrices Consider the matrix product AM, where 2 1 2 3 2 3 −4 1 1 0 0 3 0 4 2 2 0 0 1 0 6 7 6 7 6 −1 −1 7 A = 6 −1 0 0 0 0 1 7 and M = 6 7 6 7 6 2 −1 7 6 0 0 0 2 1 4 7 6 7 4 5 6 4 3 7 0 0 0 1 0 3 4 5 −2 0 Can we exploit the structure of A? Lecture 1: Linear Algebra Review Linear Programming 10 / 24 BI X A = 3×3 so take M = ; 02×3 C Y 2 1 2 3 2 2 −1 3 where X = 4 0 4 5 ; and Y = 4 4 3 5 : −1 −1 −2 0 Multiplication of Block Structured Matrices Consider the matrix product AM, where 2 1 2 3 2 3 −4 1 1 0 0 3 0 4 2 2 0 0 1 0 6 7 6 7 6 −1 −1 7 A = 6 −1 0 0 0 0 1 7 and M = 6 7 6 7 6 2 −1 7 6 0 0 0 2 1 4 7 6 7 4 5 6 4 3 7 0 0 0 1 0 3 4 5 −2 0 Can we exploit the structure of A? Lecture 1: Linear Algebra Review Linear Programming 11 / 24 X so take M = ; Y 2 1 2 3 2 2 −1 3 where X = 4 0 4 5 ; and Y = 4 4 3 5 : −1 −1 −2 0 Multiplication of Block Structured Matrices Consider the matrix product AM, where 2 1 2 3 2 3 −4 1 1 0 0 3 0 4 2 2 0 0 1 0 6 7 6 7 6 −1 −1 7 A = 6 −1 0 0 0 0 1 7 and M = 6 7 6 7 6 2 −1 7 6 0 0 0 2 1 4 7 6 7 4 5 6 4 3 7 0 0 0 1 0 3 4 5 −2 0 Can we exploit the structure of A? BI A = 3×3 02×3 C Lecture 1: Linear Algebra Review Linear Programming 11 / 24 Multiplication of Block Structured Matrices Consider the matrix product AM, where 2 1 2 3 2 3 −4 1 1 0 0 3 0 4 2 2 0 0 1 0 6 7 6 7 6 −1 −1 7 A = 6 −1 0 0 0 0 1 7 and M = 6 7 6 7 6 2 −1 7 6 0 0 0 2 1 4 7 6 7 4 5 6 4 3 7 0 0 0 1 0 3 4 5 −2 0 Can we exploit the structure of A? BI X A = 3×3 so take M = ; 02×3 C Y 2 1 2 3 2 2 −1 3 where X = 4 0 4 5 ; and Y = 4 4 3 5 : −1 −1 −2 0 Lecture 1: Linear Algebra Review Linear Programming 11 / 24 2 2 2 −11 3 2 2 −1 3 3 6 4 2 12 5 + 4 4 3 5 7 6 7 6 −1 −2 −2 0 7 = 6 7 6 7 6 7 4 4 1 5 −4 −1 2 4 −12 3 6 6 15 7 6 7 = 6 1 −2 7 : 6 7 4 4 1 5 −4 −1 Multiplication of Block Structured Matrices BI X BX + Y AM = 3×3 = 02×3 C Y CY Lecture 1: Linear Algebra Review Linear Programming 12 / 24 Multiplication of Block Structured Matrices BI X BX + Y AM = 3×3 = 02×3 C Y CY 2 2 2 −11 3 2 2 −1 3 3 6 4 2 12 5 + 4 4 3 5 7 6 7 6 −1 −2 −2 0 7 = 6 7 6 7 6 7 4 4 1 5 −4 −1 2 4 −12 3 6 6 15 7 6 7 = 6 1 −2 7 : 6 7 4 4 1 5 −4 −1 Lecture 1: Linear Algebra Review Linear Programming 12 / 24 The solution set is either empty, a single point, or an infinite set n If a solution x0 2 R exists, then the set of solutions is given by x0 + Nul (A) : Solving Systems of Linear equations Let A 2 Rm×n and b 2 Rm.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    82 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us