Tutorial on Von Neumann Algebras

Tutorial on Von Neumann Algebras

Tutorial on von Neumann algebras Adrian Ioana University of California, San Diego Model Theory and Operator Algebras UC Irvine September 20-22, 2017 1/174 the adjoint T ⇤ B(H) given by T ⇠,⌘ = ⇠,T ⇤⌘ ,forall⇠,⌘ H. 2 h i h i 2 the spectrum of T is σ(T )= λ C T λ I not invertible . { 2 | − } Fact: σ(T ) is a compact non-empty subset of C. Definition An operator T B(H)iscalled 2 1 self-adjoint if T = T ⇤. 2 positive if T ⇠,⇠ 0, for all ⇠ H. (positive self-adjoint) h i 2 ) 3 a projection if T = T = T 2 T is the orthogonal projection onto ⇤ , a closed subspace K H. ⇢ 4 a unitary if TT ⇤ = T ⇤T = I . The algebra of bounded linear operators H separable Hilbert space, e.g. `2(N), L2([0, 1], Leb). B(H) algebra of bounded linear operators T : H H, ! i.e. such that T =sup T ⇠ ⇠ =1 < . k k {k k|k k } 1 2/174 the spectrum of T is σ(T )= λ C T λ I not invertible . { 2 | − } Fact: σ(T ) is a compact non-empty subset of C. Definition An operator T B(H)iscalled 2 1 self-adjoint if T = T ⇤. 2 positive if T ⇠,⇠ 0, for all ⇠ H. (positive self-adjoint) h i 2 ) 3 a projection if T = T = T 2 T is the orthogonal projection onto ⇤ , a closed subspace K H. ⇢ 4 a unitary if TT ⇤ = T ⇤T = I . The algebra of bounded linear operators H separable Hilbert space, e.g. `2(N), L2([0, 1], Leb). B(H) algebra of bounded linear operators T : H H, ! i.e. such that T =sup T ⇠ ⇠ =1 < . k k {k k|k k } 1 the adjoint T ⇤ B(H) given by T ⇠,⌘ = ⇠,T ⇤⌘ ,forall⇠,⌘ H. 2 h i h i 2 3/174 Definition An operator T B(H)iscalled 2 1 self-adjoint if T = T ⇤. 2 positive if T ⇠,⇠ 0, for all ⇠ H. (positive self-adjoint) h i 2 ) 3 a projection if T = T = T 2 T is the orthogonal projection onto ⇤ , a closed subspace K H. ⇢ 4 a unitary if TT ⇤ = T ⇤T = I . The algebra of bounded linear operators H separable Hilbert space, e.g. `2(N), L2([0, 1], Leb). B(H) algebra of bounded linear operators T : H H, ! i.e. such that T =sup T ⇠ ⇠ =1 < . k k {k k|k k } 1 the adjoint T ⇤ B(H) given by T ⇠,⌘ = ⇠,T ⇤⌘ ,forall⇠,⌘ H. 2 h i h i 2 the spectrum of T is σ(T )= λ C T λ I not invertible . { 2 | − } Fact: σ(T ) is a compact non-empty subset of C. 4/174 3 a projection if T = T = T 2 T is the orthogonal projection onto ⇤ , a closed subspace K H. ⇢ 4 a unitary if TT ⇤ = T ⇤T = I . The algebra of bounded linear operators H separable Hilbert space, e.g. `2(N), L2([0, 1], Leb). B(H) algebra of bounded linear operators T : H H, ! i.e. such that T =sup T ⇠ ⇠ =1 < . k k {k k|k k } 1 the adjoint T ⇤ B(H) given by T ⇠,⌘ = ⇠,T ⇤⌘ ,forall⇠,⌘ H. 2 h i h i 2 the spectrum of T is σ(T )= λ C T λ I not invertible . { 2 | − } Fact: σ(T ) is a compact non-empty subset of C. Definition An operator T B(H)iscalled 2 1 self-adjoint if T = T ⇤. 2 positive if T ⇠,⇠ 0, for all ⇠ H. (positive self-adjoint) h i 2 ) 5/174 4 a unitary if TT ⇤ = T ⇤T = I . The algebra of bounded linear operators H separable Hilbert space, e.g. `2(N), L2([0, 1], Leb). B(H) algebra of bounded linear operators T : H H, ! i.e. such that T =sup T ⇠ ⇠ =1 < . k k {k k|k k } 1 the adjoint T ⇤ B(H) given by T ⇠,⌘ = ⇠,T ⇤⌘ ,forall⇠,⌘ H. 2 h i h i 2 the spectrum of T is σ(T )= λ C T λ I not invertible . { 2 | − } Fact: σ(T ) is a compact non-empty subset of C. Definition An operator T B(H)iscalled 2 1 self-adjoint if T = T ⇤. 2 positive if T ⇠,⇠ 0, for all ⇠ H. (positive self-adjoint) h i 2 ) 3 a projection if T = T = T 2 T is the orthogonal projection onto ⇤ , a closed subspace K H. ⇢ 6/174 The algebra of bounded linear operators H separable Hilbert space, e.g. `2(N), L2([0, 1], Leb). B(H) algebra of bounded linear operators T : H H, ! i.e. such that T =sup T ⇠ ⇠ =1 < . k k {k k|k k } 1 the adjoint T ⇤ B(H) given by T ⇠,⌘ = ⇠,T ⇤⌘ ,forall⇠,⌘ H. 2 h i h i 2 the spectrum of T is σ(T )= λ C T λ I not invertible . { 2 | − } Fact: σ(T ) is a compact non-empty subset of C. Definition An operator T B(H)iscalled 2 1 self-adjoint if T = T ⇤. 2 positive if T ⇠,⇠ 0, for all ⇠ H. (positive self-adjoint) h i 2 ) 3 a projection if T = T = T 2 T is the orthogonal projection onto ⇤ , a closed subspace K H. ⇢ 4 a unitary if TT ⇤ = T ⇤T = I . 7/174 strong operator topology (SOT): T T T ⇠ T ⇠ 0, i ! () k i − k! for all ⇠ H. 2 weak operator topology (WOT): T T T ⇠,⌘ T ⇠,⌘ , i ! () h i i!h i for all ⇠,⌘ H. 2 Exercise 1: Suppose that T T (WOT) and T , T are all projections i ! i (or all unitaries). Prove that T T (SOT). i ! Definition A subalgebra A B(H)iscalleda -algebra if T ⇤ A,forallT A. ⇢ ⇤ 2 2 A -subalgebra A B(H)iscalleda ⇤ ⇢ 1 C⇤-algebra if it is closed in the norm topology. 2 von Neumann algebra if it is WOT-closed. Terminology. A homomorphism ⇡ : A B between two -algebras is ! ⇤ called a -homomorphism if ⇡(T )=⇡(T ) ,forallT A. ⇤ ⇤ ⇤ 2 Abijective -homomorphism ⇡ : A B is called a -isomorphism. ⇤ ! ⇤ Topologies on B(H) norm topology: T T T T 0. i ! () k i − k! 8/174 Exercise 1: Suppose that T T (WOT) and T , T are all projections i ! i (or all unitaries). Prove that T T (SOT). i ! Definition A subalgebra A B(H)iscalleda -algebra if T ⇤ A,forallT A. ⇢ ⇤ 2 2 A -subalgebra A B(H)iscalleda ⇤ ⇢ 1 C⇤-algebra if it is closed in the norm topology. 2 von Neumann algebra if it is WOT-closed. Terminology. A homomorphism ⇡ : A B between two -algebras is ! ⇤ called a -homomorphism if ⇡(T )=⇡(T ) ,forallT A. ⇤ ⇤ ⇤ 2 Abijective -homomorphism ⇡ : A B is called a -isomorphism. ⇤ ! ⇤ Topologies on B(H) norm topology: T T T T 0. i ! () k i − k! strong operator topology (SOT): T T T ⇠ T ⇠ 0, i ! () k i − k! for all ⇠ H. 2 weak operator topology (WOT): T T T ⇠,⌘ T ⇠,⌘ , i ! () h i i!h i for all ⇠,⌘ H. 2 9/174 Definition A subalgebra A B(H)iscalleda -algebra if T ⇤ A,forallT A. ⇢ ⇤ 2 2 A -subalgebra A B(H)iscalleda ⇤ ⇢ 1 C⇤-algebra if it is closed in the norm topology. 2 von Neumann algebra if it is WOT-closed. Terminology. A homomorphism ⇡ : A B between two -algebras is ! ⇤ called a -homomorphism if ⇡(T )=⇡(T ) ,forallT A. ⇤ ⇤ ⇤ 2 Abijective -homomorphism ⇡ : A B is called a -isomorphism. ⇤ ! ⇤ Topologies on B(H) norm topology: T T T T 0. i ! () k i − k! strong operator topology (SOT): T T T ⇠ T ⇠ 0, i ! () k i − k! for all ⇠ H. 2 weak operator topology (WOT): T T T ⇠,⌘ T ⇠,⌘ , i ! () h i i!h i for all ⇠,⌘ H. 2 Exercise 1: Suppose that T T (WOT) and T , T are all projections i ! i (or all unitaries). Prove that T T (SOT). i ! 10 / 174 A -subalgebra A B(H)iscalleda ⇤ ⇢ 1 C⇤-algebra if it is closed in the norm topology. 2 von Neumann algebra if it is WOT-closed. Terminology. A homomorphism ⇡ : A B between two -algebras is ! ⇤ called a -homomorphism if ⇡(T )=⇡(T ) ,forallT A. ⇤ ⇤ ⇤ 2 Abijective -homomorphism ⇡ : A B is called a -isomorphism. ⇤ ! ⇤ Topologies on B(H) norm topology: T T T T 0. i ! () k i − k! strong operator topology (SOT): T T T ⇠ T ⇠ 0, i ! () k i − k! for all ⇠ H. 2 weak operator topology (WOT): T T T ⇠,⌘ T ⇠,⌘ , i ! () h i i!h i for all ⇠,⌘ H. 2 Exercise 1: Suppose that T T (WOT) and T , T are all projections i ! i (or all unitaries). Prove that T T (SOT). i ! Definition A subalgebra A B(H)iscalleda -algebra if T ⇤ A,forallT A. ⇢ ⇤ 2 2 11 / 174 2 von Neumann algebra if it is WOT-closed. Terminology. A homomorphism ⇡ : A B between two -algebras is ! ⇤ called a -homomorphism if ⇡(T )=⇡(T ) ,forallT A. ⇤ ⇤ ⇤ 2 Abijective -homomorphism ⇡ : A B is called a -isomorphism. ⇤ ! ⇤ Topologies on B(H) norm topology: T T T T 0. i ! () k i − k! strong operator topology (SOT): T T T ⇠ T ⇠ 0, i ! () k i − k! for all ⇠ H. 2 weak operator topology (WOT): T T T ⇠,⌘ T ⇠,⌘ , i ! () h i i!h i for all ⇠,⌘ H. 2 Exercise 1: Suppose that T T (WOT) and T , T are all projections i ! i (or all unitaries). Prove that T T (SOT). i ! Definition A subalgebra A B(H)iscalleda -algebra if T ⇤ A,forallT A. ⇢ ⇤ 2 2 A -subalgebra A B(H)iscalleda ⇤ ⇢ 1 C⇤-algebra if it is closed in the norm topology. 12 / 174 Terminology. A homomorphism ⇡ : A B between two -algebras is ! ⇤ called a -homomorphism if ⇡(T )=⇡(T ) ,forallT A.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    174 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us