Inverse Hyperbolic Functions

Inverse Hyperbolic Functions

INVERSE HYPERBOLIC FUNCTIONS We will recall that the function eex − − x sinh x = 2 is a 1 to 1 mapping.ie one value of x maps onto one value of sinhx. This implies that the inverse function exists. y =⇔=sinhxx sinh−1 y The function f(x)=sinhx clearly involves the exponential function. We will now find the inverse function in its logarithmic form. LET y = sinh−1 x x = sinh y THEN eey − − y x = 2 (BY DEFINITION) SOME ALGEBRAIC MANIPULATION GIVES yy− 2xe=− e MULTIPLYING BOTH SIDES BY e y yy2 21xe= e − RE-ARRANGING TO CREATE A QUADRATIC IN e y 2 yy 02=−exe −1 APPLYING THE QUADRATIC FORMULA 24xx± 2 + 4 e y = 2 22xx± 2 + 1 e y = 2 y 2 exx= ±+1 SINCE y e >0 WE MUST ONLY CONSIDER THE ADDITION. y 2 exx= ++1 TAKING LOGARITHMS OF BOTH SIDES yxx=++ln2 1 { } IN CONCLUSION −12 sinhxxx=++ ln 1 { } THIS IS CALLED THE LOGARITHMIC FORM OF THE INVERSE FUNCTION. The graph of the inverse function is of course a reflection in the line y=x. THE INVERSE OF COSHX The function eex + − x fx()== cosh x 2 Is of course not a one to one function. (observe the graph of the function earlier). In order to have an inverse the DOMAIN of the function is restricted. eexx+ − fx()== cosh x , x≥ 0 2 This is a one to one mapping with RANGE [1, ∞] . We find the inverse function in logarithmic form in a similar way. y = cosh −1 x x = cosh y provided y ≥ 0 eeyy+ − xy==cosh 2 2xe=+yy e− 02=−+exeyy− 2 yy 02=−exe +1 USING QUADRATIC FORMULA −24xx±−2 4 e y = 2 y 2 exx=± −1 TAKING LOGS yxx=±−ln2 1 { } yxx=+−ln2 1 is one possible expression { } APPROPRIATE IF THE DOMAIN OF THE ORIGINAL FUNCTION HAD BEEN RESTRICTED AS EXPLAINED ABOVE. HOWEVER CONSIDERING THE WHOLE FUNCTION (UNRESTRICTED) FOR EACH VALUE OF X THERE ARE TWO EQUAL AND OPPOSITE VALUES OF Y. This implies cosh−12xxx= ±+− ln 1 { } To add a more sound mathematical argument to this we can use some algebraic manipulation and laws of logs to the alternative solution. Consider (1)(xx− 22−+− xx1) xx−−≡2 1 (1)xx+−2 THIS IS NOTHING BUT A USEFUL TRICK! The numerator becomes 1 (check it and see!) So 1 xx−−≡221( ≡+−xx1)−1 (1)xx+−2 Now returning to out alternative solution −12 yxxx==±+cosh ln− 1 { } Covers all possible solutions depending on the restriction of the domain TASK: Show that the logarithmic form of the hyperbolic tan is −1 1 1+ x y ==tanhxx ln for ∠1 HINT 2 1− x Start as before by rearranging the inverse statement and then use eex − −x tanh x = eex + −x THE GOOD NEWS! THE FORMULAE FOR THE LOGARITHMIC FORMS OF INVERSE HYPERBOLIC FUNCTIONS ARE IN THE WJEC FORMULA BOOK! .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    6 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us