SQL Server 2012 Tutorials – Analysis Services Data Mining

SQL Server 2012 Tutorials – Analysis Services Data Mining

SQL Server 2012 Tutorials: Analysis Services - Data Mining SQL Server 2012 Books Online Summary: Microsoft SQL Server Analysis Services makes it easy to create sophisticated data mining solutions. The step-by-step tutorials in the following list will help you learn how to get the most out of Analysis Services, so that you can perform advanced analysis to solve business problems that are beyond the reach of traditional business intelligence methods. Category: Step-by-Step Applies to: SQL Server 2012 Source: SQL Server Books Online (link to source content) E-book publication date: June 2012 Copyright © 2012 by Microsoft Corporation All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means without the written permission of the publisher. Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of their respective owners. The example companies, organizations, products, domain names, email addresses, logos, people, places, and events depicted herein are fictitious. No association with any real company, organization, product, domain name, email address, logo, person, place, or event is intended or should be inferred. This book expresses the author’s views and opinions. The information contained in this book is provided without any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by this book. Contents Data Mining Tutorials (Analysis Services) .............................................................................................................. 5 Basic Data Mining Tutorial ........................................................................................................................................... 6 Lesson 1: Preparing the Analysis Services Database (Basic Data Mining Tutorial) ............................. 8 Creating an Analysis Services Project (Basic Data Mining Tutorial) ..................................................... 9 Creating a Data Source (Basic Data Mining Tutorial) ............................................................................. 10 Creating a Data Source View (Basic Data Mining Tutorial) .................................................................. 11 Lesson 2: Building a Targeted Mailing Structure (Basic Data Mining Tutorial)................................. 12 Creating a Targeted Mailing Mining Model Structure (Basic Data Mining Tutorial) .................. 13 Specifying the Data Type and Content Type (Basic Data Mining Tutorial) .................................... 16 Specifying a Testing Data Set for the Structure (Basic Data Mining Tutorial) ............................... 17 Lesson 3: Adding and Processing Models ...................................................................................................... 18 Adding New Models to the Targeted Mailing Structure (Basic Data Mining Tutorial) .............. 19 Processing Models in the Targeted Mailing Structure (Basic Data Mining Tutorial) .................. 20 Lesson 4: Exploring the Targeted Mailing Models (Basic Data Mining Tutorial) ............................. 22 Exploring the Decision Tree Model (Basic Data Mining Tutorial) ...................................................... 23 Exploring the Clustering Model (Basic Data Mining Tutorial) ............................................................. 25 Exploring the Naive Bayes Model (Basic Data Mining Tutorial) ......................................................... 28 Lesson 5: Testing Models (Basic Data Mining Tutorial) ............................................................................. 30 Testing Accuracy with Lift Charts (Basic Data Mining Tutorial) .......................................................... 31 Testing a Filtered Model (Basic Data Mining Tutorial) ........................................................................... 33 Lesson 6: Creating and Working with Predictions (Basic Data Mining Tutorial) .............................. 36 Creating Predictions (Basic Data Mining Tutorial) ................................................................................... 36 Using Drillthrough on Structure Data (Basic Data Mining Tutorial) .................................................. 40 Intermediate Data Mining Tutorial (Analysis Services - Data Mining) ..................................................... 42 Lesson 1: Creating the Intermediate Data Mining Solution (Intermediate Data Mining Tutorial) ..................................................................................................................................................................................... 44 Creating a Solution and Data Source (Intermediate Data Mining Tutorial) ................................... 44 Lesson 2: Building a Forecasting Scenario (Intermediate Data Mining Tutorial) ............................. 47 Adding a Data Source View for Forecasting (Intermediate Data Mining Tutorial) ...................... 48 Understanding the Requirements for a Time Series Model (Intermediate Data Mining Tutorial) ............................................................................................................................................................ 49 Creating a Forecasting Structure and Model (Intermediate Data Mining Tutorial) .................... 52 Modifying the Forecasting Structure (Intermediate Data Mining Tutorial).................................... 53 Customizing and Processing the Forecasting Model (Intermediate Data Mining Tutorial) ..... 54 Exploring the Forecasting Model (Intermediate Data Mining Tutorial) ........................................... 57 Creating Time Series Predictions (Intermediate Data Mining Tutorial) ........................................... 62 Advanced Time Series Predictions (Intermediate Data Mining Tutorial) ........................................ 67 Time Series Predictions using Updated Data (Intermediate Data Mining Tutorial) ................ 71 Time Series Predictions using Replacement Data (Intermediate Data Mining Tutorial) ....... 73 Comparing Predictions for Forecasting Models (Intermediate Data Mining Tutorial) .......... 77 Lesson 3: Building a Market Basket Scenario (Intermediate Data Mining Tutorial) ........................ 80 Adding a Data Source View with Nested Tables (Intermediate Data Mining Tutorial) ............. 81 Creating a Market Basket Structure and Model (Intermediate Data Mining Tutorial) ............... 83 Modifying and Processing the Market Basket Model (Intermediate Data Mining Tutorial) .... 86 Exploring the Market Basket Models (Intermediate Data Mining Tutorial) ................................... 87 Filtering a Nested Table in a Mining Model (Intermediate Data Mining Tutorial) ...................... 92 Predicting Associations (Intermediate Data Mining Tutorial) ............................................................. 95 Lesson 4: Building a Sequence Clustering Scenario (Intermediate Data Mining Tutorial) ......... 100 Creating a Sequence Clustering Mining Model Structure (Intermediate Data Mining Tutorial) ............................................................................................................................................................................... 101 Processing the Sequence Clustering Model ............................................................................................ 104 Exploring the Sequence Clustering Model (Intermediate Data Mining Tutorial)....................... 104 Creating a Related Sequence Clustering Model (Intermediate Data Mining Tutorial) ............ 112 Creating Predictions on a Sequence Clustering Model (Intermediate Data Mining Tutorial) ............................................................................................................................................................................... 113 Lesson 5: Building Neural Network and Logistic Regression Models (Intermediate Data Mining Tutorial) .................................................................................................................................................................. 119 Adding a Data Source View for Call Center Data (Intermediate Data Mining Tutorial) .......... 120 Creating a Neural Network Structure and Model (Intermediate Data Mining Tutorial) ......... 123 Exploring the Call Center Model (Intermediate Data Mining Tutorial) .......................................... 133 Adding a Logistic Regression Model to the Call Center Structure (Intermediate Data Mining Tutorial) .............................................................................................................................................................. 138 Creating Predictions for the Call Center Models (Intermediate Data Mining Tutorial) ........... 140 Creating and Querying Data Mining Models with DMX: Tutorials (Analysis Services - Data Mining) ....................................................................................................................................................................... 145 Bike Buyer DMX Tutorial ...................................................................................................................................... 147 Lesson 1: Creating the Bike Buyer Mining Structure ............................................................................

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    215 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us