Morten Bech Yuuki Shimizu Paul Wong [email protected] [email protected] [email protected] The quest for speed in payments1 This feature looks at technology in payment systems. It compares the diffusion of real-time gross settlement (RTGS) systems for wholesale payments with that of faster systems for retail payments (fast payments). RTGS systems emerged in the 1980s and were adopted globally within a span of 30 years. Fast payments followed in the early 2000s, offering instant payments on a 24-hour, seven-day basis. So far, the diffusion of fast payments mirrors that of RTGS, and it is primed to take off. Yet even while adoption of fast payments is under way, the next generation of payment systems, such as those based on distributed ledger technology, is under development. JEL classification: E58, G20, O30. Mankind has always been in pursuit of speed. In track and field, Jamaican superstar Usain Bolt rules the 100 metre sprint as the fastest man in the world. In the pool, American great Katie Ledecky continues to smash world records. In Formula One, Dutch sensation Max Verstappen is upending the established order and exciting fans with phenomenal speed. A similar quest is evident in payments. Throughout history, people have worked to accelerate the speed of payments for finance and commerce through the adoption of new technologies, big and small. The use of a simple ledger in the Middle Ages allowed the transfer of credit on the books of a money changer – the precursor of deposit banks (Kohn (1999)). The introduction of the telegraph revolutionised communications and enabled financial institutions to communicate instantly. Electronification and digitalisation in the modern era allowed automation. Few may recall that, before the 1980s, credit card transactions required phone authorisation and imprinting of cards on paper slips. This quest continues today. Real-time gross settlement (RTGS) systems emerged in the 1980s to speed up wholesale payments and are now the standard around the world. More recently, faster systems for retail payments (fast payments) have emerged. These systems generally allow payees to receive funds within seconds of the payer initiating the payment, anytime and anywhere. A day or more to pay another person used to be acceptable, but in today’s fast-paced environment this seems like an eternity. Consumers, who are used to instant communication via e-mail and social media, now expect the same experience when it comes to payments. 1 The authors thank Claudio Borio, Benjamin Cohen, Ingo Fender, Andreas Schrimpf and Hyun Song Shin for useful comments and suggestions. We are grateful to Codruta Boar for excellent research assistance. The views expressed are those of the authors and do not necessarily reflect those of the BIS. BIS Quarterly Review, March 2017 57 This article looks at two of the latest leaps forward in speed. Drawing in part on a recent report on fast payments by the Committee on Payments and Market Infrastructures (CPMI),2 it compares how RTGS and fast payments have spread around the world. The pattern of diffusion of fast payments is remarkably similar to the move to RTGS for wholesale payments two decades earlier. Like RTGS, fast payments are primed for take-off 15 years after the first implementation. The feature also looks to the future of payments, drawing on two other CPMI reports on distributed ledger technology and digital currencies. Emergence of fast (retail) payments Payments are transfers of monetary value from payers to payees, usually in exchange for goods and services or to fulfil contractual obligations. They come in many forms and sizes. Wholesale payments are high-priority and typically large-value transfers that are made between financial institutions for their own accounts or on behalf of their customers. Wholesale payments are usually settled via dedicated interbank settlement systems. In contrast, retail payments are lower-value transactions between individuals, businesses and governments in such forms as cash, cheques, credit transfers, and debit and credit card transactions. An important distinction between wholesale and retail payment systems has traditionally been the speed of settlement finality.3 It typically took a day or more for a payee to receive funds using a traditional retail payment system, and for some systems payments were revocable within a certain period, adding an element of uncertainty. Hence, time-sensitive payments (even lower-value ones) were directed via the interbank payment system because of its ability to credit and debit accounts with real-time finality. The speed of retail payments is now immediate in some countries thanks to improvements in information and communication technologies, including the ubiquity of smartphones and the internet. Fast payments provide retail funds transfer “in which the transmission of the payment message and the availability of ’final‘ funds to the payee occur in real-time or near real-time on as near to a 24/7 basis” (CPMI (2016b)). Further, this feature focuses on open systems, where end users can use any number of intermediaries, such as payment service providers (PSPs) and banks, to access the payment system.4 (See the box for how fast payments work and examples of fast payment systems.) 2 The CPMI is a BIS-based committee of senior central bank officials that promotes the safety and efficiency of payment, clearing, settlement and related arrangements (www.bis.org/cpmi/). 3 Settlement finality is defined as the point when the irrevocable and unconditional transfer of an asset occurs. 4 Closed systems provide payment services to only their customers, and credits and debits occur on their own books. Closed systems often have limitations on the coverage of users within a market or jurisdiction, which is a key element to the successful adoption of new payment services. 58 BIS Quarterly Review, March 2017 How do fast payment systems work? A defining characteristic of a fast payment system is the ability to complete a payment almost immediately and at any time. To achieve this outcome, all fast payment systems require immediate clearing between the payment service providers (PSPs) of the payer and payee. Funds settlements between the PSPs, however, do not necessarily need to occur immediately for each and every payment order. Payee funds availability and inter-PSP settlement can be either coupled (ie real-time settlement) or decoupled (ie deferred settlement). In real-time settlement, payee funds availability and inter-PSP settlements are coupled, with inter-PSP settlements occurring in real time. In other words, the debiting and crediting of funds from the payer to the payee occur at the same time as associated debiting and crediting of the PSP in the fast payment system. In this model, credit risks between participating PSPs do not arise, but participating PSPs continuously require sufficient liquidity to support real-time settlements of fast payments. Therefore, a system is required to address the possible need for liquidity provision to the participant PSPs in the system, the adequacy of the settlement system’s operating hours and associated liquidity facilities. Countries that use this model include Mexico and Sweden. In deferred settlement, payee funds availability and inter-PSP settlements are decoupled, with inter-PSP settlements being deferred with batch settlement. That is, while payer and payee accounts are debited and credited in real time or near real time, the associated settlements between the PSPs are batched and executed at pre-specified times. In this model, credit risk inherently arises for PSPs, as the payee’s PSP advances the funds to the payee before inter-PSP settlement takes place. A variety of tools can mitigate this risk, including prefunding of positions, a maximum limit on the net debit or credit position that can be established between PSPs, and collateralisation of debit positions. Countries that use this model include India and the United Kingdom. Examples of fast payment systems Mexico – The Sistema de Pagos Electrónicos Interbancarios (SPEI) is the Bank of Mexico’s main payment system, providing both wholesale and retail payment services. SPEI was launched in 2004 and provided near real-time retail payments. As of November 2015, the service offers 24/7 availability. Funds are available to the payee in less than 15 seconds for mobile payments and less than 60 seconds for other online payments. Currently, 109 institutions (66 banks and 43 non-banks) participate in SPEI as direct members to provide their customers with fast payment services. Sweden – BiR/Swish, introduced in 2012, is a real-time settlement system for mobile payments in Sweden. Being a privately owned special purpose institution that conducts settlement in commercial bank money, which in turn is fully backed by funding in central bank money, the system allows real-time settlement of fast payments even during times when other settlement facilities (eg the central bank real-time gross settlement system) are closed. The typical time between payment initiation and availability of final funds to the payee for a successful fast payment transaction is one to two seconds. More than half of the country’s population uses the Swish mobile app to make fast payments India – The Immediate Payment Service (IMPS) went live as a new instant mobile payment system in 2010. The system allows mobile phone subscribers and internet-connected devices to send and receive payments. Payees typically receive funds in less than 30 seconds. The service provides access to fast payments through 190 PSPs. In December 2016, IMPS processed 60.5 million transactions, which represented a 50% increase from the previous month – the largest monthly increase to date – likely driven by the Indian banknote demonetisation directive of November 2016 and the subsequent push from the government to get digital payments adopted nationwide. United Kingdom – The Faster Payments Service (FPS) is a deferred net settlement system for credit transactions in the form of single, immediate payments, forward-dated payment, or standing orders for households and corporates.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages12 Page
-
File Size-