A Regional Assessment of the Potential for Co2 Storage in the Indian Subcontinent

A Regional Assessment of the Potential for Co2 Storage in the Indian Subcontinent

A REGIONAL ASSESSMENT OF THE POTENTIAL FOR CO2 STORAGE IN THE INDIAN SUBCONTINENT Technical Study Report No. 2008/2 May 2008 This document has been prepared for the Executive Committee of the IEA GHG Programme. It is not a publication of the Operating Agent, International Energy Agency or its Secretariat. INTERNATIONAL ENERGY AGENCY The International Energy Agency (IEA) was established in 1974 within the framework of the Organisation for Economic Co-operation and Development (OECD) to implement an international energy programme. The IEA fosters co-operation amongst its 26 member countries and the European Commission, and with the other countries, in order to increase energy security by improved efficiency of energy use, development of alternative energy sources and research, development and demonstration on matters of energy supply and use. This is achieved through a series of collaborative activities, organised under more than 40 Implementing Agreements. These agreements cover more than 200 individual items of research, development and demonstration. The IEA Greenhouse Gas R&D Programme is one of these Implementing Agreements. ACKNOWLEDGEMENTS AND CITATIONS This report was prepared as an account of the work sponsored by the IEA Greenhouse Gas R&D Programme. The views and opinions of the authors expressed herein do not necessarily reflect those of the IEA Greenhouse Gas R&D Programme, its members, the International Energy Agency, the organisations listed below, nor any employee or persons acting on behalf of any of them. In addition, none of these make any warranty, express or implied, assumes any liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product of process disclosed or represents that its use would not infringe privately owned rights, including any parties intellectual property rights. Reference herein to any commercial product, process, service or trade name, trade mark or manufacturer does not necessarily constitute or imply any endorsement, recommendation or any favouring of such products. COPYRIGHT Copyright © IEA Environmental Projects Ltd. (Greenhouse Gas R&D Programme) 2008. All rights reserved. ACKNOWLEDGEMENTS AND CITATIONS This report describes research sponsored by the IEA Greenhouse Gas R&D Programme. This report was prepared by: British Geological Survey Keyworth Nottingham NG12 5GG The principal researchers were: • S Holloway • K L Kirk • A Garg • L R Applequist • M Kapshe • A Deshpande • A S Pracha • D J Evans • S R Khan • Y Garg • M A Mahmood • C J Vincent • T N Singh • J D O Williams To ensure the quality and technical integrity of the research undertaken by the IEA Greenhouse Gas R&D Programme (IEA GHG) each study s managed by an appointed IEA GHG manager. The report is also reviewed by a panel of independent technical experts before its release. The IEA GHG manager for this report: John Gale The expert reviewers for this report: • Stefan Bachu, ERCB, Canada • John Bradshaw, Geoscience Australia, Australia • Rajesh Pawar, LANL, USA • Sankar Battacharya, IEA, France The report should be cited in literature as follows: IEA Greenhouse Gas R&D Programme (IEA GHG), “A Regional Assessment of the Potential for CO2 Storage in the Indian Subcontinent”, 2008/2, May 2008. Further information or copies of the report can be obtained by contacting the IE Greenhouse Gas R&D Programme at: IEA Greenhouse Gas R&D Programme, Orchard Business Centre, Stoke Orchard, Cheltenham, Glos., GL52 7RZ, UK Tel: +44 1242 680753 Fax: +44 1242 680758 E-mail: [email protected] www.ieagreen.org.uk OVERVIEW Background to the Study The IEA Greenhouse Gas R&D Programme (IEA GHG) has recently commissioned the British Geological Society (BGS) to conduct a regional assessment of the Indian subcontinent in order rd to gauge the potential for CO2 storage in geological reservoirs in that region. This is the 3 regional capacity study conducted by the IEA GHG following on from assessments of Europe1 and North America2. It should be noted that the study only assessed the 4 main options of geological storage; deep saline aquifers, depleted oil and gas fields, and storage in deep unminable coal fields. In addition, the study has undertaken an assessment of the current large point source emissions from the power sector on the Indian subcontinent and assessed their geographical relationship with possible geological stores. This process is also known as source- store matching, and a good source of CO2 close to suitable geological storage reservoirs can significantly impact on the costs and technical feasibility of a CCS operation. Without nearby sources for injection, the transport element of the CO2 chain becomes more expensive, and thus can result in the classification of a proposal as uneconomical. The choice of the Indian subcontinent for this third study is primarily down to 2 main reasons. Firstly, as an emergent economy, India is considered likely to experience high growth in energy demand due to increasing economic development, and this will naturally include a corresponding increase in anthropogenic CO2 emissions. Much of the increased power demand will come from increased use of fossil fuels and in particular coal. The growth in energy demand is likely to be met by government backed plans to install increased capacity in power plants throughout many regions. History has taught us that when a country undergoes rapid economic growth, there is a corresponding increase in the demand for power and subsequent increase in anthropogenic CO2 emissions. The second driver behind the choice the Indian subcontinent is the current lack of any other definitive study into the capacity for CCS in the area. Scope of Study One of the first tasks completed for the study was the compilation of inventories of CO2 emissions from large point sources (>100,000kt CO2/y) throughout the subcontinent, and these were then entered into the IEA GHG CO2 Emissions Database. This provided a valuable update to the database, further enabling it as an insightful source of information to the IEA GHG team and its member countries. Once this information was compiled and entered onto the database, it was then combined with a GIS system, allowing the point sources to be mapped onto the geographical map of the Indian subcontinent. The locations and extent of the known oil and gas reservoirs, coal beds, and saline aquifer bearing rock formations were overlaid onto the GIS to highlight any areas with close matching of source to sinks. At this point, the areas that were found to have large basalt formations were also identified and plotted, although they were to take no further part in the study. The decision to exclude storage in basalt formations was taken due to the relatively un-developed science of storage in these formations. It was felt that the technologies used in these processes are not sufficiently technologically advanced to be considered as a sound and secure storage reservoir at present. 1 IEA Greenhouse Gas R&D Programme report no. 2005/2 Building the cost curves for CO2 storage, Europe, February 2005 2 ; IEA Greenhouse Gas R&D Programme report no. 2005/3 Building the cost curves for CO2 storage, North America, March 2005 1 However, it should be noted that these basalt formations are relatively extensive in the Indian subcontinent, and pending the development and advancement of technological options, the potential for storage in basalt formations could be of a significantly large scale. There is also a good correlation between the basalt formations and many of the large point sources, which will prove beneficial and cost effective if large scale storage in basalts becomes technically feasible. Comment on the future potential for basalt storage in India has been made in the report. Due to the large spatial area covered by the subcontinent, the decision was made early on to address the countries involved on an individual basis. This removes issues related to national boundaries and political issues from the methodology used to assess storage capacity and matching point sources to storage reservoirs. The study therefore addressed point sources and storage options in India, Pakistan, Bangladesh and Sri Lanka independently. This overview will summarise the main findings and outcomes of the study in these sections to maintain the symmetry with the main report. Results and Discussion The results obtained from the study are summarised for each individual country on the Indian subcontinent. India 3 Currently, India has annual CO2 emissions of around 1343 Mt and approximately half of this is 4 from large point sources suitable for CO2 capture . The main fuel used for energy generation in India is coal. The Indian government is backing an initiative to developing up to 9 Ultra-Mega Power Projects (UMPP) to meet increased energy demand. This development will add approximately 36,000MW of installed capacity, with a corresponding increase in CO2 emissions of approximately 275Mt a year. This first phase of 9 UMPP’s is planned to be operational within 7 – 8 years. The recoverable coal reserves in India are the fourth largest in the world, and it is expected that both open cast and underground mining will occur in all coal fields to a depth of 600m regardless of the quality of the coal reserves. It is also expected that where the reserves are of a superior quality, the reserves are likely to be mined to a depth of around 1200m. By its nature, mining of this magnitude results in fissures and fractures opening in the overburden above the mined seams, and the structural impact of this means that any storage in coal seams would take place at locations that have either not been subjected to selective underground mining, or at depths of 100m below the deepest selective underground mining operations. This is better viewed in a table, see Table 1 overleaf to demonstrate the reserves estimated to be available to CCS in India.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    214 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us