Spectra of Graphs

Spectra of Graphs

Spectra of graphs Andries E. Brouwer Willem H. Haemers 2 Contents 1 Graph spectrum 11 1.1 Matricesassociatedtoagraph . 11 1.2 Thespectrumofagraph ...................... 12 1.2.1 Characteristicpolynomial . 13 1.3 Thespectrumofanundirectedgraph . 13 1.3.1 Regulargraphs ........................ 13 1.3.2 Complements ......................... 14 1.3.3 Walks ............................. 14 1.3.4 Diameter ........................... 14 1.3.5 Spanningtrees ........................ 15 1.3.6 Bipartitegraphs ....................... 16 1.3.7 Connectedness ........................ 16 1.4 Spectrumofsomegraphs . 17 1.4.1 Thecompletegraph . 17 1.4.2 Thecompletebipartitegraph . 17 1.4.3 Thecycle ........................... 18 1.4.4 Thepath ........................... 18 1.4.5 Linegraphs .......................... 18 1.4.6 Cartesianproducts . 19 1.4.7 Kronecker products and bipartite double. 19 1.4.8 Strongproducts ....................... 19 1.4.9 Cayleygraphs......................... 20 1.5 Decompositions............................ 20 1.5.1 Decomposing K10 intoPetersengraphs . 20 1.5.2 Decomposing Kn into complete bipartite graphs . 20 1.6 Automorphisms ........................... 21 1.7 Algebraicconnectivity . 22 1.8 Cospectralgraphs .......................... 22 1.8.1 The4-cube .......................... 23 1.8.2 Seidelswitching. 23 1.8.3 Godsil-McKayswitching. 24 1.8.4 Reconstruction ........................ 24 1.9 Verysmallgraphs .......................... 24 1.10 Exercises ............................... 25 3 4 CONTENTS 2 Linear algebra 29 2.1 Simultaneousdiagonalization . 29 2.2 Perron-FrobeniusTheory . 29 2.3 Equitablepartitions . 32 2.3.1 Equitable and almost equitable partitions of graphs . 32 2.4 TheRayleighquotient. 33 2.5 Interlacing .............................. 34 2.6 Schur’sinequality .......................... 35 2.7 Schurcomplements.......................... 36 2.8 TheCourant-Weylinequalities . 36 2.9 Grammatrices ............................ 37 2.10 Diagonallydominantmatrices . 38 2.10.1 Gerˇsgorincircles . 38 2.11 Projections .............................. 39 2.12 Exercises ............................... 39 3 Eigenvalues and eigenvectors of graphs 41 3.1 Thelargesteigenvalue . 41 3.1.1 Graphswithlargesteigenvalueatmost2 . 42 3.1.2 Subdividinganedge . 43 3.1.3 TheKelmansoperation . 44 3.1.4 Spectral radius of a graph with a given number of edges . 44 3.2 Interlacing .............................. 45 3.3 Regulargraphs............................ 46 3.4 Bipartitegraphs ........................... 46 3.5 Cliquesandcocliques ........................ 47 3.5.1 Usingweightedadjacencymatrices . 47 3.6 Chromaticnumber.......................... 48 3.6.1 Usingweightedadjacencymatrices . 50 3.6.2 Rankandchromaticnumber . 50 3.7 Shannoncapacity .......................... 50 3.7.1 Lov´asz’ ϑ-function ...................... 51 3.7.2 The Haemers bound on the Shannon capacity . 53 3.8 Classificationofintegralcubicgraphs . 53 3.9 ThelargestLaplaceeigenvalue . 57 3.10 Laplaceeigenvaluesanddegrees . 58 3.11 TheGrone-MerrisConjecture. 60 3.11.1 Thresholdgraphs. 60 3.11.2 ProofoftheGrone-MerrisConjecture . 60 3.12 TheLaplacianforhypergraphs . 63 3.13 Applicationsofeigenvectors. 65 3.13.1 Ranking............................ 65 3.13.2 GooglePagerank. 65 3.13.3 Cutting ............................ 66 3.13.4 Graphdrawing ........................ 67 3.13.5 Clustering........................... 67 3.13.6 GraphIsomorphism . 68 3.13.7 Searchinganeigenspace . 69 3.14 Starsandstarcomplements. 69 CONTENTS 5 3.15 Exercises ............................... 70 4 The second largest eigenvalue 73 4.1 Boundsforthesecondlargesteigenvalue. 73 4.2 Largeregularsubgraphsareconnected. 74 4.3 Randomness ............................. 74 4.4 Randomwalks ............................ 75 4.5 Expansion............................... 76 4.6 ToughnessandHamiltonicity . 77 4.6.1 ThePetersengraphisnotHamiltonian . 77 4.7 Diameterbound ........................... 78 4.8 Separation .............................. 78 4.8.1 Bandwidth .......................... 80 4.8.2 Perfectmatchings . 80 4.9 Blockdesigns............................. 82 4.10 Polarities ............................... 84 4.11 Exercises ............................... 85 5 Trees 87 5.1 Characteristicpolynomialsoftrees . 87 5.2 Eigenvectorsandmultiplicities . 89 5.3 Signpatternsofeigenvectorsofgraphs. 90 5.4 Signpatternsofeigenvectorsoftrees. 91 5.5 Thespectralcenterofatree . 92 5.6 Integraltrees ............................. 93 5.7 Exercises ............................... 94 6 Groups and graphs 95 6.1 Γ(G,H,S) .............................. 95 6.2 Spectrum ............................... 95 6.3 NonabelianCayleygraphs. 96 6.4 Covers................................. 97 6.5 Cayleysumgraphs.......................... 99 6.5.1 (3,6)-fullerenes . 99 6.6 Exercises ............................... 100 7 Topology 101 7.1 Embeddings ............................. 101 7.2 Minors ................................ 101 7.3 TheColindeVerdi`ereinvariant. 102 7.4 The Van der Holst-Laurent-Schrijver invariant . 103 7.5 Spectralradiusofgraphsonasurface . 104 7.6 Exercises ............................... 104 8 Euclidean representations 105 8.1 Examples ............................... 105 8.2 Euclideanrepresentation . 105 8.3 Rootlattices ............................. 106 8.4 Cameron-Goethals-Seidel-Shult . 111 8.5 Furtherapplications . 112 6 CONTENTS 8.6 Exercises ............................... 112 9 Strongly regular graphs 113 9.1 Stronglyregulargraphs . 113 9.1.1 Simpleexamples . 113 9.1.2 ThePaleygraphs. 114 9.1.3 Adjacencymatrix . 115 9.1.4 Imprimitivegraphs. 115 9.1.5 Parameters .......................... 115 9.1.6 The half case and cyclic strongly regular graphs . 116 9.1.7 Strongly regular graphs without triangles . 116 9.1.8 Furtherparameterrestrictions . 117 9.1.9 Strongly regular graphs from permutation groups . 118 9.1.10 Strongly regular graphs from quasisymmetric designs . 119 9.1.11 Symmetric 2-designs from strongly regular graphs . 119 9.1.12 Latinsquaregraphs . 119 9.1.13 PartialGeometries . 121 9.2 Strongly regular graphs with eigenvalue 2............ 121 − 9.3 Connectivity ............................. 122 9.4 Cocliquesandcolorings . 124 9.4.1 Cliques ............................ 125 9.5 Automorphisms ........................... 126 9.6 Generalizedquadrangles. 126 9.6.1 Parameters .......................... 126 9.6.2 Constructions of generalized quadrangles . 127 9.6.3 Strongly regular graphs from generalized quadrangles . 128 9.6.4 Generalized quadrangles with lines of size 3 . 128 9.7 The(81,20,1,6)stronglyregulargraph . 129 9.7.1 Descriptions. .. 129 9.7.2 Uniqueness .......................... 130 9.7.3 Independence and chromatic numbers . 131 9.7.4 Secondsubconstituent . 132 9.7.5 Strongly regular graphs with λ = 1 and g = k ....... 133 9.8 Strongly regular graphs and 2-weight codes . 133 9.8.1 Codes,graphsandprojectivesets. 133 9.8.2 The correspondence between linear codes and subsets of a projectivespace. 133 9.8.3 The correspondence between projective two-weight codes, subsets of a projective space with two intersection num- bers, and affine strongly regular graphs . 134 9.8.4 Duality for affine strongly regular graphs . 136 9.8.5 Cyclotomy .......................... 137 9.9 Table ................................. 139 9.10 Exercises ............................... 144 CONTENTS 7 10 Regular two-graphs 147 10.1 Stronggraphs ............................ 147 10.2 Two-graphs.............................. 148 10.3 Regulartwo-graphs . 149 10.3.1 Relatedstronglyregulargraphs . 151 10.3.2 The regular two-graph on 276 points . 152 10.3.3 Coherentsubsets . 152 10.3.4 Completelyregulartwo-graphs . 152 10.4 Conferencematrices . 153 10.5 Hadamardmatrices . 154 10.5.1 Constructions. 155 10.6 Equiangularlines. 156 10.6.1 Equiangular lines in Rd and two-graphs . 156 10.6.2 Bounds on equiangular sets of lines in Rd or Cd . 157 10.6.3 Bounds on sets of lines with few angles and sets of vectors withfewdistances . 159 10.7 Exercise................................ 160 11 Association schemes 161 11.1 Definition............................... 161 11.2 TheBose-Mesneralgebra . 162 11.3 TheLinearProgrammingBound . 164 11.3.1 Equality............................ 165 11.3.2 TheCode-CliqueTheorem . 165 11.3.3 StrengthenedLPbounds . 165 11.4 TheKreinparameters . 166 11.5 Automorphisms ........................... 167 11.5.1 TheMooregraphon3250vertices . 168 11.6 P - and Q-polynomialassociationschemes . 168 11.7 Exercises ............................... 170 12 Distance-regular graphs 173 12.1 Parameters .............................. 173 12.2 Spectrum ............................... 173 12.3 Primitivity .............................. 174 12.4 Examples ............................... 174 12.4.1 Hamminggraphs . 174 12.4.2 Johnsongraphs. 175 12.4.3 Grassmanngraphs . 175 12.4.4 VanDam-Koolengraphs. 175 12.5 Bannai-Itoconjecture . 176 12.6 Connectedness ............................ 176 12.7 Growth ................................ 176 12.8 Degreeofeigenvalues . 176 12.9 Mooregraphsandgeneralizedpolygons . 177 12.10Euclideanrepresentations . 178 12.10.1Borsuk’sConjecture . 178 12.11Extremality.............................. 179 12.12Exercises ............................... 180 8 CONTENTS 13 p-ranks 183 13.1 Reduction mod p ........................... 183 13.2 Theminimalpolynomial . 184 13.3 Bounds for the p-rank........................ 184 13.4 Interesting primes p ......................... 185 13.5 Adding a multiple of J ....................... 185

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    253 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us