Thermal Evolution of the Axial Anomaly

Thermal Evolution of the Axial Anomaly

Thermal evolution of the axial anomaly Gergely Fej}os Research Center for Nuclear Physics Osaka University The 10th APCTP-BLTP/JINR-RCNP-RIKEN Joint Workshop on Nuclear and Hadronic Physics 18th August, 2016 G. Fejos & A. Hosaka, arXiv: 1604.05982 Gergely Fej}os Thermal evolution of the axial anomaly Outline aaa Motivation Functional renormalization group Chiral (linear) sigma model and axial anomaly Extension with nucleons Summary Gergely Fej}os Thermal evolution of the axial anomaly Motivation Gergely Fej}os Thermal evolution of the axial anomaly Chiral symmetry is spontaneuously broken in the ground state: < ¯ > = < ¯R L > + < ¯L R > 6= 0 SSB pattern: SUL(Nf ) × SUR (Nf ) −! SUV (Nf ) Anomaly: UA(1) is broken by instantons Details of chiral symmetry restoration? Critical temperature? Axial anomaly? Is it recovered at the critical point? Motivation QCD Lagrangian with quarks and gluons: 1 L = − G a G µνa + ¯ (iγ Dµ − m) 4 µν i µ ij j Approximate chiral symmetry for Nf = 2; 3 flavors: iT aθa iT aθa L ! e L L; R ! e R R [vector: θL + θR , axialvector: θL − θR ] Gergely Fej}os Thermal evolution of the axial anomaly Details of chiral symmetry restoration? Critical temperature? Axial anomaly? Is it recovered at the critical point? Motivation QCD Lagrangian with quarks and gluons: 1 L = − G a G µνa + ¯ (iγ Dµ − m) 4 µν i µ ij j Approximate chiral symmetry for Nf = 2; 3 flavors: iT aθa iT aθa L ! e L L; R ! e R R [vector: θL + θR , axialvector: θL − θR ] Chiral symmetry is spontaneuously broken in the ground state: < ¯ > = < ¯R L > + < ¯L R > 6= 0 SSB pattern: SUL(Nf ) × SUR (Nf ) −! SUV (Nf ) Anomaly: UA(1) is broken by instantons Gergely Fej}os Thermal evolution of the axial anomaly Motivation QCD Lagrangian with quarks and gluons: 1 L = − G a G µνa + ¯ (iγ Dµ − m) 4 µν i µ ij j Approximate chiral symmetry for Nf = 2; 3 flavors: iT aθa iT aθa L ! e L L; R ! e R R [vector: θL + θR , axialvector: θL − θR ] Chiral symmetry is spontaneuously broken in the ground state: < ¯ > = < ¯R L > + < ¯L R > 6= 0 SSB pattern: SUL(Nf ) × SUR (Nf ) −! SUV (Nf ) Anomaly: UA(1) is broken by instantons Details of chiral symmetry restoration? Critical temperature? Axial anomaly? Is it recovered at the critical point? Gergely Fej}os Thermal evolution of the axial anomaly two independent quartic couplings: g1; g2 0 8 explicit symmetry breaking: H = h0T + h8T 't Hooft determinant breaks only the UA(1) symmetry Goal: take into account quantum- and thermal fluctuations to see the finite temperature behavior of the system Motivation Effective field theory of chiral symmetry breaking: −! three-flavor linear sigma model −! M = T a(sa + iπa) 0 [pseudoscalar mesons: π; K; η; η , scalar mesons: a0; κ, f0; σ] g L = @ M@µMy − µ2 Tr (MMy) − 1 [ Tr (MMy)]2 µ 9 g − 2 Tr (MMy)2 − Tr [H(M + My)] − a(det M + det My) 3 Gergely Fej}os Thermal evolution of the axial anomaly Motivation Effective field theory of chiral symmetry breaking: −! three-flavor linear sigma model −! M = T a(sa + iπa) 0 [pseudoscalar mesons: π; K; η; η , scalar mesons: a0; κ, f0; σ] g L = @ M@µMy − µ2 Tr (MMy) − 1 [ Tr (MMy)]2 µ 9 g − 2 Tr (MMy)2 − Tr [H(M + My)] − a(det M + det My) 3 two independent quartic couplings: g1; g2 0 8 explicit symmetry breaking: H = h0T + h8T 't Hooft determinant breaks only the UA(1) symmetry Goal: take into account quantum- and thermal fluctuations to see the finite temperature behavior of the system Gergely Fej}os Thermal evolution of the axial anomaly Functional renormalization group FRG: follows the idea of Wilsonian renormalization group Z R R 1 − S[φ]+ Jφ+ φRk φ Zk [J] = Dφe 2 R : IR regulator function k k 2 Requirements: 1., scale separation (suppress modes q k) (q) . k R 2., Rk −! 1 if k −! 1 3., Rk −! 0 if k −! 0 0 0 k q Gradually moving k from Λ to 0, fluctuations are getting integrated out Gergely Fej}os Thermal evolution of the axial anomaly Functional renormalization group scale-dependent effective action: Z 1 Z Γ [φ¯] = − log Z [J] − Jφ¯ − φ¯R φ¯ k k 2 k −! k ≈ Λ: no fluctuations ) Γk=Λ[φ¯] = S[φ¯] −! k = 0: all fluctuations ) Γk=0[φ¯] = Γ1PI [φ¯] the scale-dependent effective action interpolates between classical- and quantum effective actions Gergely Fej}os Thermal evolution of the axial anomaly Derivative expansion + Chiral invariant expansion: Z h µ y 2 y g1;k (M) y 2 Γk = @µM@ M − µk (M) Tr (MM ) − [ Tr (MM )] x 9 g (M) i − 2;k Tr (MMy)2 − A (M)(det M + det My) − h s 3 k i i −! resummation of operators: aaaa∼ Tr n[MMy] × (det M + det My) and aaaa∼ Tr n[MMy] × ( Tr [MMyMMy]) Chiral (linear) sigma model Flow of the effective action is described by the Wetterich equation: Z (T ) 1 (2) −1 @k Γk = Tr @k Rk (q; p)(Γk + Rk ) (p; q) 2 q;p −! exact relation, functional integro-differential equation −! approximation(s) needed Gergely Fej}os Thermal evolution of the axial anomaly Chiral (linear) sigma model Flow of the effective action is described by the Wetterich equation: Z (T ) 1 (2) −1 @k Γk = Tr @k Rk (q; p)(Γk + Rk ) (p; q) 2 q;p −! exact relation, functional integro-differential equation −! approximation(s) needed Derivative expansion + Chiral invariant expansion: Z h µ y 2 y g1;k (M) y 2 Γk = @µM@ M − µk (M) Tr (MM ) − [ Tr (MM )] x 9 g (M) i − 2;k Tr (MMy)2 − A (M)(det M + det My) − h s 3 k i i −! resummation of operators: aaaa∼ Tr n[MMy] × (det M + det My) and aaaa∼ Tr n[MMy] × ( Tr [MMyMMy]) Gergely Fej}os Thermal evolution of the axial anomaly First one fixes the explicit symmetry breaking using the PCAC relations: 2 5µ @ y mafaπ^a = @µJa = − a Tr (H(M + M )) (a = 1; :::8) @θA 3 3 −! h0 ≈ (286MeV ) , h8 ≈ −(311MeV ) 2 µ and g1 are fixed by the light spectra π, K 0 anomaly parameter a and g2 is selected to reproduce η and η masses in the vacuum Chiral (linear) sigma model The model has 6 free parameters, which have to be fixed using experimental input 2 −! chiral symmetric parameters: µ , g1, g2 −! explicit breaking terms: h0, h8 −! chiral anomaly parameter: a Gergely Fej}os Thermal evolution of the axial anomaly 2 µ and g1 are fixed by the light spectra π, K 0 anomaly parameter a and g2 is selected to reproduce η and η masses in the vacuum Chiral (linear) sigma model The model has 6 free parameters, which have to be fixed using experimental input 2 −! chiral symmetric parameters: µ , g1, g2 −! explicit breaking terms: h0, h8 −! chiral anomaly parameter: a First one fixes the explicit symmetry breaking using the PCAC relations: 2 5µ @ y mafaπ^a = @µJa = − a Tr (H(M + M )) (a = 1; :::8) @θA 3 3 −! h0 ≈ (286MeV ) , h8 ≈ −(311MeV ) Gergely Fej}os Thermal evolution of the axial anomaly Chiral (linear) sigma model The model has 6 free parameters, which have to be fixed using experimental input 2 −! chiral symmetric parameters: µ , g1, g2 −! explicit breaking terms: h0, h8 −! chiral anomaly parameter: a First one fixes the explicit symmetry breaking using the PCAC relations: 2 5µ @ y mafaπ^a = @µJa = − a Tr (H(M + M )) (a = 1; :::8) @θA 3 3 −! h0 ≈ (286MeV ) , h8 ≈ −(311MeV ) 2 µ and g1 are fixed by the light spectra π, K 0 anomaly parameter a and g2 is selected to reproduce η and η masses in the vacuum Gergely Fej}os Thermal evolution of the axial anomaly Chiral (linear) sigma model Functions need to be determined numerically: 2 −! effective potential pieces: µk (M); g1;k (M); g2;k (M) −! anomaly function Ak (M) Step I.: solve the renormalization group equations for these functions at T = 0 to determine the model parameters 2 (µ ; g1; g2; a) Step II.: solve the same equations at T > 0 to get: −! thermal effects on the mesonic spectrum −! details of symmetry restoration −! finite temperature behavior of the UA(1) anomaly Gergely Fej}os Thermal evolution of the axial anomaly Numerical results without anomaly 1000 f0 800 κ a [MeV] 0 600 η' 400 K masses σ 200 π,η 0 0 50 100 150 200 250 300 350 400 T [MeV] Gergely Fej}os Thermal evolution of the axial anomaly Numerical results with anomaly 1000 f 0 κ η' 800 a0 [MeV] 600 η K σ masses 400 200 π 0 100 200 300 400 500 T [MeV] Gergely Fej}os Thermal evolution of the axial anomaly Numerical results 1000 η' mass 900 800 [MeV] 700 masses ' η , 600 η η mass 500 400 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 T/TC −! solid: full solution, dashed: field- and T independent anomaly Gergely Fej}os Thermal evolution of the axial anomaly Numerical results 8 7 T = 1.2 Tc T = 0.7 Tc 6 T = 0 [GeV] 5 |A| 4 3 2 0 100 200 300 + √<M M> [MeV] Gergely Fej}os Thermal evolution of the axial anomaly Numerical results 8 7.5 7 6.5 [GeV] 6 5.5 anomaly 5 4.5 |A[0]| |A[vmin]| 4 0 100 200 300 400 500 T [MeV] Gergely Fej}os Thermal evolution of the axial anomaly Numerical results 1 0.8 strange (0) s/ns 0.6 (T)/v 0.4 s/ns v non strange 0.2 0 0 100 200 300 400 500 T [MeV] dashed: without anomaly, solid: with anomaly Gergely Fej}os Thermal evolution of the axial anomaly Introduction of the nucleon field: T (x)= n(x) p(x) g L = @ M@µMy − µ2 Tr (MMy) − 1 [ Tr (MMy)]2 µ 9 g − 2 Tr (MMy)2 − Tr [H(M + My)] − a(det M + det My) 3 + ¯(−@i γi + µB γ0) + g ¯M~5 ~ ~ P ~a a a M5 is a modified meson field: M5 = ns;1;2;3 T (σ + iπ γ5) −! element of an embedded U(2) algebra in flavor U(3) 1 1 0 1 Pauli T~ns = ; T~1;2;3 = 2 0 1 2 matrices Chiral (linear) sigma model with nucleons So far: finite T results with zero baryochemical potential Behavior of the anomaly in nuclear medium? Gergely Fej}os Thermal evolution of the axial anomaly Chiral (linear) sigma model with nucleons So far: finite T results with zero baryochemical potential Behavior of the anomaly in nuclear medium? Introduction of the nucleon field: T (x)= n(x) p(x) g L = @ M@µMy − µ2 Tr (MMy) − 1 [ Tr (MMy)]2 µ 9 g − 2 Tr (MMy)2 − Tr [H(M

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    27 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us