Understanding the Actions of a Dietary Anti-Oxidant at the Protein and Small

Understanding the Actions of a Dietary Anti-Oxidant at the Protein and Small

3/8/2012 Mar 9, 2012 UAB BMG744 Understanding the actions of a dietary anti-oxidant at the protein and small molecule level using top-down proteomics, enzyme assays and mass spectrometry Helen Kim, Ph.D. and John Cutts Dept of Pharmacology & Toxicology University of Alabama at Birmingham [email protected] 205-934-3880 HelenKim/UAB/PharmTox OUTLINE I. Top-down proteomic analysis of actions of a dietary supplement, grape seed extract (GSE), in mammalian brain; II. FT-ICR MS mapping of reactive aldehyde 4HNE adduct sites on recombinant creatine kinase (CK- BB); III. Enzyme assays: HNE stoichiometrically poisons CK- BB; HelenKim/UAB/PharmTox 2 1 3/8/2012 Our principal goal: to understand the molecular basis of human chronic conditions/diseases, to develop prevention or therapies. Strategy: a proteomics approach Hypothesis: Actions of “beneficial” agents such as dietary anti- oxidants in normal and disease tissue will reveal subproteomes of proteins “at risk” for disease-relevant changes. HelenKim/UAB/PharmTox 3 POLYPHENOLS: similar structures among themselves, and with 17b-estradiol OH OH O GRAPE: OH TEA (grapes): resveratrol H catechin OH HO O H HO OH OH OH OH O HO O HO SOY: 17b-estradiol genistein HelenKim/UAB/PharmTox 4 2 3/8/2012 The experiment: give grapeseed powder in rat diet; examine brain proteomes AIN-76A diet; normal adult rats AIN-76A + 5% GSE; normal adult rats (n = 5) (n = 5) whole brain homogenates, triplicate 2D gels HelenKim/UAB/PharmTox 5 Image analysis indicated rat brain proteins were affected by GSE. Creatine kinase GSE Control Different in intensity Different in horizontal position HelenKim/UAB/PharmTox 6 3 3/8/2012 Database of protein differences in GSE vs CT brains Protein Name #matched Accession MOWSE Obs Pred Obs Pred Nature of pep # m.w. m.w. pI pI change in GSE brains Mitochondrial matrix 10 P19227 *1.26E+04 64900 60956 5.6 5.9 +1.5 proteinprecursorP60 Creatine Kinase BB 12 P07335 *1.66E+05 45600 42712 5.45 5.3 +1.52 chain Translocation to Acidic pH Actin 8 P10365 *2.18E+05 42000 41636 5.3 5.4 Less complex GFAP 20 P47819 *9.67E+09 49000 49943 5.4 5.3 - 1.6 14-3-3 epsilon 10 P42655 *1.41E+09 31900 29174 4.49 4.6 - 2.1 Alpha Enolase 9 P04764 *6.64E+05 46000 46985 6.0 6.2 Less complex Gamma Enolase 10 P07323 95 47000 47111 5.12 5.03 Less complex RIKEN cDNA 9 NP080270 169 26000 25084 5.0 5.0 -1.56 (NM 025994) 95 26000 25084 5.1 HSC-70 12 gi4103877 110 70321 42455 5.9 6.64 +1.63 HSC-71 16 gi123644 105 70386 71195 5.43 5.49 +1.91 Neurofilament L 14 gi13929098 120 61025 61298 4.61 4.63 +1.63 Triplet protein Neurofilament M 19 gi8393823 153 95086 95591 4.75 4.76 +1.73 triplet protein Vimentin 10 gi202368 93 53600 53641 5.09 5.06 -1.52 HelenKim/UAB/PharmTox 7 (Deshane et al., 2004. J. Agric. Food Chem.) Initial conclusion: GSE is neuroprotective, since its effects on proteins are counter to the directions of change for the same proteins in disease. Mitochondrial matrix protein precursor HSP-60 14-3-3 epsilon protein Heat shock cognate 70 Heat shock cognate 71 GREEN: folding/ stress response Neurofilament triplet protein L PURPLE : energy Neurofilament triplet protein M BLUE: new GFAP Vimentin ORANGE: cytoskeleton Creatine kinase Brain isoform Gamma enolase Alpha enolase Actin RIKEN cDNA NM 025944 (Schonberger et al., 2001) (Tilleman et al., 2002a) (Tilleman et al., 2002b) HelenKim/UAB/PharmTox 8 (Deshane et al., 2004. J. Agric. Food Chem.) 4 3/8/2012 Western blot analysis corroborated 2D gel image analysis quantitation C. Quantitative Densitometry A. Stained gel for HSP-60 100 CT GSE 80 60 50 kDa 40 B. Western Blots 20 Densitometry units Densitometry 0 50 kDa CT GSE (Deshane et al., 2004. J. Agric. Food Chem.) HelenKim/UAB/PharmTox 9 Use chemistry to determine whether GSE affects oxidations HelenKim/UAB/PharmTox 10 5 3/8/2012 Preliminary experiments indicated GSE affected oxidations of abundant proteins 4 pI 7 250 100 a 50 D k A 25 15 Coomassie stained gel 10 250 100 a 50 D k A Creatine kinase 25 15 10 Anti-DNP WesteHelenKim/UAB/PharmToxrn blot 11 4-hydroxy-2-nonenal (4HNE) A reactive aldehyde resulting from arachidonic acid * * Reacts with K, C, and H O H O H N O H C H O C H O S N N N H N O N H H O O 4HNE-Modified Lysine 4HNE-Modified Cysteine 4HNE-Modified Histidine Schiff Base Adduct Michael Adduct Michael Adduct 6 3/8/2012 HelenKim/UAB/PharmTox 13 (Eliuk et al., Chem. Res. Toxicol., 2007) Modified Amino Concentration of 4HNE (_M) Acid 5 0 0 0 300 100 30 10 5 7 H M,S M,S M,S S 26 H M M M M 29 H M M 45 K M 66 Sites of HNE- H M M 86 K M M adducts on CKBB 97 H M M M 101 over a range of K M M 141 C M M M M concentrations; 145 C M M M M RED indicates 177 K M 191 active-site H M M M 219 H M,S M,S M residues 234 H M,S M,S S 247 K M,S 254 C M,S M,S M,S M,S M M 276 H M M 283 C M M M M M 296 H M,S M,S S 305 H M M 313 K M 358 K M 381 HelenKim/UAB/PharmTox 14 K M (Eliuk et al., Chem. Res. Toxicol., 2007) 7 3/8/2012 Crystal structure of CK-BB showing the HNE adducts at active-site and non-active-site residues detected at 30 M 4HNE. C283 H26 C254 C141 C145 H7 Active site 4HNE -modifications Non-active site modifications (crystal structure adapted from Eder et al., 1999) HelenKim/UAB/PharmTox 15 (Eliuk et al., Chem. Res. Toxicol., 2007) Reduction of CK-BB activity correlated with increased HNE-adducts formed at active-site residues y y y t t t i i i 100 v v v i i i t t t c c c 90 * 10 µM hCK-BB a a a B B B 80 = active site modification B B B - - - 70 * K K K C C C 60 h h h d d d 50 e e e i i i f f f i i i 40 * d d d o o o 30 m m m n n n 20 * u u u f f f 10 * * o o o * * % % % 0 * * * ** 10 30 100 300 4HNE concentration (µM) (Eliuk et al., Chem. Res. Toxicol., 2007) (Eliuk et al., Chem. Res. Toxicol., 2007) hCKBchymotrypsin1000uMDIdd3masswindows # 95-98 RT: 9.95-10.17 AV: 2 NL: 7.05E1 T: Average spectrum MS2 999.50 (95-98) 100 95 90 +156 85 80 75 T L D D V I Q T G V D N P G H P Y 70 e 8 c n a d 65 n u b A 60 e v i t a l 55 e R 50 45 LTQ-MS/MS 40 35 m/z=998.9958 30 b 11 y 25 y4 b10 11 y6 1157 20 1340 629 840 1042 15 b5 b6 b y8 b 10 8 y 13 544 657 1054 10 5 y5 886 1212 1368 0 726 b15 400 600 800 y10007 1200 1400 1600 1800 2000 ym/z y12 1718 955 9 b 1111 12 b 1453 1271 14 1425 b7 785 C283 H26 C254 C141 C145 H7 Active site 4HNE -modifications Non-active site modifications 3/8/2012 HelenKim/UAB/PharmTox 17 (Eliuk et al., Chem. Res. Toxicol., 2007) HelenKim/UAB/PharmTox 18 (Eliuk et al., Chem. Res. Toxicol., 2007) 9 3/8/2012 HelenKim/UAB/PharmTox 19 Modifications of CKBB in both AD and CT brain: HelenKim/UAB/PharmTox 20 10 3/8/2012 Modifications on CKBB detected by MS/MS analysis Modified Age-matched Peptide Sequence Modification Mass Shift AD Amino Acid Control FPAEDEFPDLSAHNNHMAK M30 Oxidation 15.998 ü ü FPAEDEFPDLSAHNNHMAK M30 Di-oxidation 32.001 ü* ü* GIWHNDNK W218 Oxidation 15.980 ü ü TFLVWVNEEDHLR W228 Kynurenine 3.999 ü* ü** TFLVWVNEEDHLR W228 Oxidation 16.005 ü ü TFLVWVNEEDHLR W228 Di-oxidation 32.004 ü ü SKDYEFMWNPH M272 Oxidation 15.997 ü ü LGFSEVELVQMVVDGVK M352 Oxidation 15.990 ü ü LLIEMEQR M363 Oxidation 15.995 ü ü LEQGQAIDDLMPAQK M377 Oxidation 15.996 ü ü * Detected only by GPMS S N NH + 3 O N N N H H O H O O Structures courtesy of Methionine Tryptophan Kynurenine D. Stella Conclusions regarding the grapeseed studies • GSE has pleiotropic effects in the brain: – gene expression/protein turnover; – protein oxidations; – These actions may be consistent with neuroprotection, since the majority are in the opposite direrction to changes affecting these proteins in AD or models of dementia. – These were the first studies to identify specific proteins affected by dietary intake of a complex botanical mixture. HelenKim/UAB/PharmTox 22 11 3/8/2012 Conclusions from the studies with CKBB • Incubation with HNE stoichiometrically inhibited hCKBB activity. • this was correlated with increased HNE adducts on CKBB, revealed by FT-ICR-MS. • At the lowest activity, all four active-site residues of CKBB were HNE-modified. • Thus, a combination of state of the art mass spectrometry and conventional biochemistry was optimal in determining the role of HNE adducts on CKBB function.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    12 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us