Supersymmetric Ads Backgrounds and Their Moduli Spaces

Supersymmetric Ads Backgrounds and Their Moduli Spaces

Supersymmetric AdS backgrounds and their moduli spaces Jan Louis, University Hamburg In collaboration with: S.de Alwis, P.Karndumri, S.L¨ust, L.McAllister, C.Muranaka, P.R¨uter, H.Triendl, A.Westphal, M.Zagermann [arXiv:1312.5659,1406.3363,1506.08040,1507.01623,1601.00482,1607.08249, 1611.02982, 1612.00301, and in progress] Milano, Februrary 2017 2 Motivation 1. AdS backgrounds often appear as intermediate step (before “uplifting”) in models of string phenomenology 2. AdS backgrounds feature prominently in AdS/CFT correspondence In both cases their moduli space C also is of interest 1. moduli stabilization/values of physical parameters 2. corresponds to conformal manifold of dual CFT ⇒ study (supersymmetric) AdS backgrounds and their moduli spaces in supergravity in arbitrary space-time dimensions with arbitrary number of supercharges 3 D = 4, N = 1 – basic formuli i chiral multiplet: (φ,χ) , gravitational multiplet: (gµν , ψµ) 1 i ¯¯j ¯ Lbosonic = 2 R − Gi¯j ∂µφ ∂µφ − V , i, j = 1,..., nc , where 2 2 Gi¯j = ∂i∂¯jK , V = |A1i| − 3|A0| , 1 2 K 1 A0 = e W(φ) , A1i = DiA0 , DiA0 = ∂iA0 + 2 (∂iK)A0 Supersymmetry transformation of the fermions δχi = A1i ǫ + ..., δψµ = Dµǫ + A0γµǫ + ... Supersymmetric AdS backgrounds: hδψµi = hδχii = 0 ⇒ hA1ii = 0 , hA0i 6= 0 , hA0i ∼ cos. const. / AdS-radius Classification for N = 1 difficult/impossible (?) 4 D = 4, N = 1 – supersymmetric moduli space 1. Minkowski background (hA0i = 0) generic W : no moduli space special W : holomorphic W (φ) implies: moduli space C is K¨ahler submanifold of original K¨ahler field space M (and protected by supersymmetry) 2. AdS background hA0i 6= 0 ¯ 1 • φ cannot drop out of A1φ = ∂φA0 + 2 (∂φK)A0 and hV i • no protection against quantum corrections • moduli space C is real submanifold of original K¨ahler 1 manifold M, at best with dim(C) = 2 dim(M) 5 D = 4, N = 1 – supersymmetric moduli space necessary condition: i ¯i δhA0i = hA1iiδφ + hA¯ 1iiδφ¯ = 0 , δhA¯ 0i = ... = 0 j 1 ¯¯j ¯ δhA1ii = h∂jA1iiδφ + 2 hKi¯jA0iδφ = 0 , δhA1ii = ... = 0 (1st eq. identically satisfied in supersymmetric backgrounds) Rewrite 2nd condition: j δφ mij hK ¯A0i M = 0 , with M = ij , ¯¯j ¯ δφ hK¯ijA0i ¯m¯i¯j where mij = h∇iA1ji = fermionic mass matrix ➪ generically M has full rank ⇒ δφj = 0 ⇒ no moduli space ➪ for special (tuned) W/A0: moduli space possible [DLMTW, ...] 6 Maximally supersymmetric backgrounds in arbitrary dim. D Distinguish two cases: backgrounds with/without fluxes 1. backgrounds without fluxes 7 Maximally supersymmetric backgrounds in arbitrary dim. D Distinguish two cases: backgrounds with/without fluxes 1. backgrounds without fluxes Supersymmetry transformation of fermions in gauged supergravities I I I J i i J δψµ = Dµǫ + A0J(φ)γµǫ + ..., δχ = A1J(φ)ǫ + ... 2 2 with V ∼|A1| − c(d,q)|A0| Supersymmetric backgrounds preserving all q supercharges: I I J hDµǫ + A0J(φ)γµǫ i = 0 , hA1i = 0 , ∀ I, J 2 Consistency condition: Rµνρσ ∼ trA0 (gµρgνσ − gµσgνρ) (D−d) Solutions: AdSD or Md × T , 1 ≤ d ≤ D (D−d) (note: AdSd × Y not possible) 8 Supersymmetric moduli spaces C of AdSD • supersymmetric moduli spaces C⊂M • necessary condition: δφhA0i =0= δφhA1i • Gradient-flow equations: [d’Auria, Ferrara] δhA0i = hA1i δφ~ = 0 , δhA1i = M δφ~ , M := mf + hA0i • necessary condition for moduli space: M has null eigenspace ∗ = 0 C⊂M has same geometry as M hA0i 6= 0 C⊂M has different geometry as M • q = 4: can tune superpotential/mf but C generically destroyed by quantum corrections • q = 8, 16, 32: no superpotential, can choose spectrum and gauged isometries of M, supersymmetric protection 9 Example: d = 5,q = 16 supercharges [JL, Triendl, Zagermann] ➪ multiplets and scalar geometry i 0,m i • gravity (gµν , ψµ, Aµ ,χ , Σ), m = 1,..., 5 ⇒ 6 graviphotons a a am • vector (Aµ, λ ,φ ), a = 1,..., nv scalar field space: M(Σ,φ)= R+ × SO(5,nv) SO(5)×SO(nv) ➪ supersymmetric AdS backgrounds can be “classified” gauge group: G = U(1) × Gˆ ⊂ SO(5, nv) where Gˆ ⊂ SO(3, nv) → SO(3) × H , H = compact subgroup ➪ moduli space possible: [G¨unaydin,Pilch,Warner,Zagermann] SU(1, p) SO(2, 2p) SO(5, n ) C = ⊂ ⊂ v U(1) × SU(p) SO(2) × SO(2p) SO(5) × SO(nv) 10 General story: AdS moduli space for M = G/H [JL, S. L¨ust, R¨uter] ➪ gauging isometries of M induces gauging of R-symmetry HR ➪ Maximally supersymmetric AdS backgrounds: g HR ⊂ HR gauged only by (subset of) graviphotons Aµ ➪ A0 and Aµ transform in specific rep. of HR depending on D,q ➪ l hA0i 6= 0 implies HR → HR (little group) ➪ additional constraint: g l HR ⊂ HR ⊂ HR of AdS-vacuum has to have Aµ in its adj. rep. ➪ flat directions of V : g g HR charged Goldstone bosons + HR-singlets = moduli 11 Example: d = 7,q = 32 supercharges [JL, S. L¨ust, P. R¨uter] ➪ I [MN] IJK gravity multiplet: (gµν , ψµ, Aµ ,χ ,φ) I, J, K = 1,..., 4, M,N = 1,..., 5 ➪ SL(5) scalar field space: M(φ)= SO(5) ➪ A0 ∈ 1 ⊕ 5, A1 ∈ 5 ⊕ 14 ⊕ 35 of HR = SO(5) ∼ USp(4) l g ⇒ HR = HR = HR = USp(4) ➪ δφ ∈ 14 ⇒ no GB, no singlets ⇒ no moduli 12 Results so far: AdS(d,q) M C [ ] (4,4) K¨ahler Real [DLMTW] (4,8) SK× QK Real×K¨ahler [DMLTW] (5,8) SR× QK K¨ahler [Tachikawa,LM] O(1,n ) (6,8) T × QK – [?] O(nT ) SK: Special K¨ahler QK: Quanternionic K¨ahler SR: Special Real [DMLTW]=[de Alwis, JL, McAllister, Triendl, Westphal] [LM]=[JL, Muranaka] 13 Results so far: g AdS(d,q) M HR C [ ] SO(6,6+n ) SU(1,1) (4,16) v × SO(4) AX [LT] SO(6)×SO(6+nv ) U(1) SO(5,5+nv ) + SU(1,p) (5,16) × R U(2) [GPWZ,LTZ] SO(5)×SO(5+nv ) SU(p)×U(1) SO(4,4+nv ) + (6,16) × R SU(2) × SU(2) AX [KL] SO(4)×SO(4+nv ) SO(3,3+nv ) + (7,16) × R USp(2) AX [LL] SO(3)×SO(3+nv ) E7,7 (4,32) SU(8) SO(8) AX [LLR] E6,6 SU(1,1) (5,32) USp(8) SU(4) U(1) [LLR] SO(5,5) (6,32) SO(5)×SO(5) XX XX [LLR] SL(5) (7,32) SO(5) USp(4) AX [LLR] AX: AdS background exists and can be classified but no moduli space, XX: AdS background does not exist [LT]=[JL,Triendl] [LLR]=[JL, L¨ust, R¨uter] [KL]=[Karndumri,JL] 14 AdS/CFT correspondence AdSd bulk with q supercharges ⇔ q q − SCFTd 1 on AdSd boundary with 2 + 2 super+sconformal charges AdS ⇔ SCFT (broken) gauge group (anomalous) flavour group scalars with mass m couplings of gauge invariant operators moduli exactly marginal couplings moduli space C conformal manifold C i S = S0 + ϕ Oi Pi R 2d gij(ϕ)= x hOi(x)Oj(0)iS [Zamolodchikov] 15 Compare AdS with SCFT-results AdS(d,q) C [ ] SCFT d− , q CSCFT [ ] ( 1 2 ) 1 (4,4) Real [DLMTW] (3,2) Real [CDI] (4,8) Real×K¨ahler [DMLTW] (3,4) K¨ahler [GKSTW] (5,8) K¨ahler [T,LM] (4,4) K¨ahler [Ansin] (6,8) – [?] (5,4) SXX SX: SCFT exists but no moduli space, SXX: SCFT does not exist [CDI]=[Cordova,Dumitrescu,Intriligator] [GKSTW]=[Green,Komargodski,Seiberg,Tachikawa,Wecht] 1 none known, no susy protection 16 Compare AdS with SCFT-results (Note: no SCFT in d> 6) AdS(d,q) C [ ] SCFT d− , q CSCFT [ ] ( 1 2 ) (4,16) AX [LT] (3,8) SX [CDI] SU(1,p) 2 (5,16) SU(p)×U(1) [GPWZ,LTZ] (4,8) K¨ahler (?) [P,GGK] (6,16) AX [KL] (5,8) SX [CDI] (7,16) AX [LL] (6,8) SX [LL] (4,32) AX [LLR] (3,16) SX [CDI] SU(1,1) SU(1,1) (5,32) U(1) [LLR] (4,16) U(1) [?] (6,32) XX [LLR] (5,16) SXX [Nahm] (7,32) AX [LLR] (6,16) SX [LL] [GPWZ]=[G¨unaydin,Pilch,Warner,Zagermann] [P,GGK]= [Papadodimas; Gerchkovitz,Gomis,Komargodski] 2 ∗ [GGK] only show K¨ahler, [P] shows tt -geometry 17 Supersymmetric backgrounds in arbitrary dimensions D Distinguish two cases: backgrounds with/without fluxes 2. backgrounds with fluxes 18 Supersymmetric backgrounds in arbitrary dimensions D Distinguish two cases: backgrounds with/without fluxes 2. backgrounds with fluxes [JL, S. L¨ust, ...] Supersymmetry transformation of the fermions I I I J I J i i J i J δψµ = Dµǫ + (F0µ)Jǫ + A0 J γµǫ , δχ = (F1)Jǫ + A1J ǫ , A A J A J δλ = (F2)J ǫ + A2J ǫ , F0,1/2 = sum of fluxes in gravitational multiplet/other multiplets supersymmetric backgrounds: F1 = F2 = A1 = A2 = 0 ⇒ F0 = 0 two exceptions: 1. chiral theories with selfdual fluxes 2. supergravities without χ’s in gravitational multiplet 19 Supersymmetric backgrounds in arbitrary dimensions D ➪ candidate supergravities/fluxes: dimension supersymmetry q possible flux classification of maximal supersymmetric solutions D = 11 N = 1 32 F (4) [Figueroa-O’Farrill,Papadopoulos] (5) D = 10 IIB 32 F [Figueroa-O’Farrill,Papadopoulos] + (3) D = 6 N = (2, 0) 16 5 × F [Chamseddine,Figueroa-O’Farrill,Sabra] + (3) D = 6 N = (1, 0) 8 F [Gutowski,Martelli,Reall] + D = 5 N = 2 8 F (2) [Gauntlett,Gutowski,Hull,Pakis,Reall] D = 4 N = 2 8 F (2) [Tod] ➪ study this list case by case to find • hA0i = hA1i = hA2i =0 • no flux for R-symmetry possible [Hristov,Looyestijn,Vandoren;Gauntlett,Gutowski;Akyol,Papadopoulos] ➪ background solutions have to coincide with ungauged solutions they are classified in ungauged case (see refs.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    21 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us