Symmetry and Ergodicity Breaking, Mean-Field Study of the Ising Model

Symmetry and Ergodicity Breaking, Mean-Field Study of the Ising Model

<p>Symmetry and ergodicity breaking, mean-field study of the <br>Ising model </p><p>Rafael Mottl, ETH Zurich Advisor: Dr. Ingo Kirsch </p><p>Topics </p><p>Introduction Formalism The model system: Ising model </p><p>Solutions in one and more dimensions Symmetry and ergodicity breaking Conclusion </p><p>Introduction </p><p></p><ul style="display: flex;"><li style="flex:1">phase A </li><li style="flex:1">phase B </li></ul><p></p><p>T<sub style="top: 0.29em;">c </sub></p><p>temperature T phase transition </p><p>order parameter <br>ꢀ Critical exponents </p><p>T</p><p>T<sub style="top: 0.29em;">c </sub></p><p>Formalism </p><p><strong>Statistical mechanical basics </strong></p><p>Ω</p><p>sample region </p><p>d</p><p>i) certain dimension ii) volume </p><p>V (Ω) N(Ω) </p><p>iii) number of particles/sites iv) boundary conditions <br>Hamiltonian defined on the sample region </p><p>ꢀ</p><p>H<sub style="top: 0.25em;">Ω </sub></p><p>−</p><p>=</p><p>K<sub style="top: 0.25em;">n</sub>Θ<sub style="top: 0.25em;">n </sub></p><p>k<sub style="top: 0.25em;">B</sub>T </p><p>n</p><p>Depending on the degrees of freedom </p><p>Coupling constants </p><p>Partition function </p><p>1</p><p>β = </p><p>Z<sub style="top: 0.24em;">Ω</sub>[{K<sub style="top: 0.24em;">n</sub>}] = Tr exp<sup style="top: -0.69em;">−βH ({K },{Θ }) </sup></p><p>Ω</p><p></p><ul style="display: flex;"><li style="flex:1">n</li><li style="flex:1">n</li></ul><p></p><p>k<sub style="top: 0.25em;">B</sub>T </p><p>F<sub style="top: 0.24em;">Ω</sub>[{K<sub style="top: 0.24em;">n</sub>}] = F<sub style="top: 0.24em;">Ω</sub>[K] = −k<sub style="top: 0.24em;">B</sub>TlogZ<sub style="top: 0.24em;">Ω</sub>[{K<sub style="top: 0.24em;">n</sub>}] </p><p>Free energy Free energy per site </p><p>F<sub style="top: 0.25em;">Ω</sub>[K] f<sub style="top: 0.24em;">b</sub>[K] =&nbsp;lim <br>N(Ω)→∞ N(Ω) </p><p>i) Non-trivial&nbsp;existence of limit </p><p>Ω</p><p>ii) Independent&nbsp;of iii) </p><p>lim <br>N(Ω) </p><p>= const </p><p>N(Ω)→∞ V (Ω) </p><p><strong>Phases and phase boundaries </strong></p><p>f<sub style="top: 0.24em;">b</sub>[K] </p><p></p><ul style="display: flex;"><li style="flex:1">Supp.: - </li><li style="flex:1">exists </li></ul><p></p><p>{K<sub style="top: 0.24em;">1</sub>, . . . , K<sub style="top: 0.24em;">D</sub>} </p><p>- there&nbsp;exist D coulping constants: </p><ul style="display: flex;"><li style="flex:1">-</li><li style="flex:1">is analytic almost everywhere </li></ul><p></p><p>f<sub style="top: 0.24em;">b</sub>[K] </p><p>f [{K<sub style="top: 0.24em;">n</sub>}] <sub style="top: 0.24em;">are points, lines, planes, hyperplanes in the </sub></p><p>- non-analyticities of&nbsp;b phase diagram </p><p>D<sub style="top: 0.24em;">s </sub>= 0, 1, 2, . . . </p><p>ꢀ Dimension of these singular loci: <br>Codimension C for each type of singular loci: </p><p>C = D − D<sub style="top: 0.24em;">s </sub></p><p>f<sub style="top: 0.24em;">b</sub>[K] </p><p><strong>Phase</strong>: region&nbsp;of analyticity of </p><p><strong>Phase boundaries</strong>: loci of codimension C = 1 </p><p><strong>Types of phase transitions </strong></p><p>f<sub style="top: 0.24em;">b</sub>[K] </p><p>is everywhere continuous. <br>Two types of phase transitions: </p><p>∂f<sub style="top: 0.26em;">b</sub>[K] </p><p>a) Discontinuity&nbsp;across the phase boundary of </p><p>∂K<sub style="top: 0.25em;">i </sub></p><p><strong>first-order phase transition </strong></p><p>b) All&nbsp;derivatives of the free energy per site are continuous across the phase boundaries </p><p><strong>Continuous phase transition </strong></p><p><strong>Overview </strong></p><p>Z<sub style="top: 0.24em;">Ω</sub>[K] = Tr exp<sup style="top: -0.68em;">−βH (K,{Θ }) </sup></p><p>Ω</p><p>n</p><p>F<sub style="top: 0.24em;">Ω</sub>[K] = −k<sub style="top: 0.24em;">B</sub>TlogZ<sub style="top: 0.24em;">Ω</sub>[K] </p><p>F<sub style="top: 0.25em;">Ω</sub>[K] f<sub style="top: 0.24em;">b</sub>[K] =&nbsp;lim <br>N(Ω)→∞ N(Ω) </p><p>∂<br>∂f<sub style="top: 0.25em;">b</sub>[K] </p><p>ǫ<sub style="top: 0.26em;">in</sub>[K] =&nbsp;(βf<sub style="top: 0.26em;">b</sub>[K]) </p><p>∂β </p><p>M[K] = − </p><p>∂H </p><p></p><ul style="display: flex;"><li style="flex:1">internal energy </li><li style="flex:1">magnetization </li></ul><p></p><p>∂M[K] <br>∂ǫ<sub style="top: 0.25em;">in</sub>[K] </p><p>χ<sub style="top: 0.24em;">T </sub>[K] = <br>C[K] = </p><p>∂H <br>∂T </p><p>magnetic susceptibility heat capacity </p><p><strong>Critical exponents </strong></p><p>How do the measurable quantities change in the neighbourhood of a critical point? </p><p>T − T<sub style="top: 0.26em;">C </sub>t = </p><p>T<sub style="top: 0.24em;">C </sub></p><p>Critical temperature </p><p>T<sub style="top: 0.26em;">C </sub></p><p>C ∼|t|<sup style="top: -0.68em;">−α </sup></p><p>heat capacity </p><p>β</p><p>for H ≡ 0 </p><p>M ∼|t| </p><p>Order parameter (t &lt; 0) susceptibility </p><p>χ ∼|t|<sup style="top: -0.69em;">−γ </sup>M ∼ H<sup style="top: -0.69em;">1/δ </sup></p><p>Equation of state </p><p><strong>Correlation length </strong></p><p>- Length scale over which the fluctuations of the microscopic degrees of freedom are significantly correlated with each other </p><p>(Cardy: Scaling and Renormalization in Statistical Physics) </p><p>- Strong dependence on temperature near a phase transition diverging to infinity at the transition itself </p><p><strong>Critical exponents for the correlation function </strong></p><p>t → 0 </p><p>Γ(r) −→ r<sup style="top: -0.84em;">−p</sup>e<sup style="top: -0.84em;">−r/ξ </sup></p><p>ξ ∼|t|<sup style="top: -0.6em;">−ν </sup></p><p>Correlation length </p><p>p = d − 2 + η </p><p>Power-law decay (t=0) </p><p>The model system: Ising model </p><p>- attempt to simulate a domain in a ferromagnetic material - Spontaneous magnetization in absence of an external magnetic field - Critical temperature: Curie temperature </p><p><strong>Importance of Ising model </strong></p><p>- Equivalent models (lattice gas, binary alloy) - The only non-trivial example of a phase transition that can be worked out be mathematical rigor in statistical mechanics </p><p>- Compare computer simulations of the model with exact solution </p><p><strong>Characterization of the Ising model </strong></p><p>i) Periodic&nbsp;lattice ii) Lattice&nbsp;contains in d dimensions </p><p>Ω</p><p>fixed points called lattice sited </p><p>N(Ω) </p><p>iii) For&nbsp;each site: classical spin variable S<sub style="top: 0.42em;">i </sub>= +/- 1 (i = 1, …, N) in a definite direction (degrees of freedom) </p><p>iv) Most&nbsp;general Hamiltonian </p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢀ</li><li style="flex:1">ꢀ</li></ul><p></p><p>−H<sub style="top: 0.24em;">Ω </sub>= </p><p></p><ul style="display: flex;"><li style="flex:1">H<sub style="top: 0.24em;">i</sub>S<sub style="top: 0.24em;">i </sub>+ </li><li style="flex:1">J<sub style="top: 0.24em;">ij</sub>S<sub style="top: 0.24em;">i</sub>S<sub style="top: 0.24em;">j </sub>+ </li></ul><p></p><p>K<sub style="top: 0.24em;">ijk</sub>S<sub style="top: 0.24em;">i</sub>S<sub style="top: 0.24em;">j</sub>S<sub style="top: 0.24em;">k </sub>+ . . . </p><p>i,j </p><p>i∈Ω </p><p>i,j,k </p><p>2<sup style="top: -0.69em;">N(Ω) </sup></p><p>v) Number&nbsp;of possible configurations: </p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ ꢀ </li><li style="flex:1">ꢀ</li><li style="flex:1">ꢀ</li></ul><p></p><p>Tr ≡ </p><p></p><ul style="display: flex;"><li style="flex:1">· · · </li><li style="flex:1">≡</li></ul><p></p><p>S<sub style="top: 0.16em;">1</sub>=±1 S<sub style="top: 0.16em;">2</sub>=±1 </p><p>S</p><p><sub style="top: 0.21em;">N(Ω)</sub>=±1 </p><p>{S<sub style="top: 0.16em;">i</sub>=±1} </p><p><strong>Assumptions </strong></p><p>K<sub style="top: 0.24em;">ijk </sub>= 0, . . . </p><p>i) two-spin&nbsp;coupling only </p><p>H<sub style="top: 0.25em;">i </sub>≡ H </p><p>ii) External&nbsp;magnetic field spatially constant iii) Nearest-neighbour&nbsp;interactions only </p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢀ</li></ul><p></p><p>→</p><p></p><ul style="display: flex;"><li style="flex:1">i,j </li><li style="flex:1">&lt;ij&gt; </li></ul><p></p><p>iv) Isotropic&nbsp;interactions v) Hypercubic&nbsp;lattice </p><p>J<sub style="top: 0.25em;">ij </sub>≡ J z = 2d J &gt; 0 </p><p>vi) Ferromagnetic&nbsp;material </p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢀ</li></ul><p></p><p>−H<sub style="top: 0.33em;">Ω </sub>= H S<sub style="top: 0.33em;">i </sub>+ J </p><p>S<sub style="top: 0.33em;">i</sub>S<sub style="top: 0.33em;">j </sub></p><p>&lt;i,j&gt; </p><p>i∈Ω </p><p>ꢀ</p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢀ</li></ul><p></p><p><sub style="top: 0.55em;">i∈Ω </sub>S<sub style="top: 0.24em;">i</sub>+J </p><p><sub style="top: 0.55em;">&lt;i,j&gt; </sub>S<sub style="top: 0.24em;">i</sub>S<sub style="top: 0.24em;">j</sub>) </p><p></p><ul style="display: flex;"><li style="flex:1">Z<sub style="top: 0.37em;">Ω</sub>[H, T, J] = </li><li style="flex:1">exp<sup style="top: -1.05em;">β(H </sup></li></ul><p></p><p>{S<sub style="top: 0.24em;">i</sub>=±1} </p><p><strong>Arguments for phase transition in d = 1,2 dimensions with H = 0 </strong></p><p>ꢀ</p><p>F<sub style="top: 0.25em;">Ω</sub>[K] = E<sub style="top: 0.25em;">in</sub>[K] − TS<sub style="top: 0.25em;">Ω</sub>[K] = −J </p><p>S<sub style="top: 0.25em;">i</sub>S<sub style="top: 0.25em;">j </sub>− Tk<sub style="top: 0.25em;">B</sub>log(♯(states)) </p><p>&lt;i,j&gt; </p><p>A<br>B</p><p><strong>d = 1 </strong></p><p>N → ∞ </p><p>F<sub style="top: 0.24em;">N,B </sub>− F<sub style="top: 0.24em;">N,A </sub>= 2J − k<sub style="top: 0.24em;">B</sub>Tlog(N − 1) → −∞ </p><p><strong>d = 2 </strong></p><p>A<br>B</p><p>n bonds </p><p>F<sub style="top: 0.24em;">N,B </sub>− F<sub style="top: 0.24em;">N,A </sub>= [2J − log(z − 1)k<sub style="top: 0.24em;">B</sub>T]n <br>2J </p><p>T<sub style="top: 0.25em;">C </sub>= </p><p>k<sub style="top: 0.26em;">B</sub>log(z − 1) </p><p><strong>Long range order&nbsp;</strong>ꢀ <strong>short range order </strong></p><p>- nearest neighbour interaction: short range interaction - What about: </p><p>J</p><p>J<sub style="top: 0.26em;">ij </sub>= </p><p>σ</p><p>|r<sub style="top: 0.25em;">i </sub>− r<sub style="top: 0.25em;">j</sub>| </p><p>Answer: </p><p>σ &lt; 1 </p><p>thermodynamic limit does not exist </p><p>1 ꢀ σ ꢀ 2 </p><p>long range order persist for 0 &lt; T &lt; T<sub style="top: 0.42em;">C </sub>short-range interaction: no ferromagnetic state for T &gt; 0 </p><p>2 ꢀ σ </p><p>Solutions in one and more dimensions </p><p>- ad hoc methods - recursion method </p><p>H = 0 d = 1 </p><p>- transfer matrix method </p><p>H = 0 </p><p>(Kramers, Wannier 1941) <br>- low temperature expansion </p><p></p><ul style="display: flex;"><li style="flex:1">H = 0 </li><li style="flex:1">d = 2 </li></ul><p></p><p>- Onsager solution (1944) - mean-field method (Weiss) </p><p>d = 1, 2, 3 </p><p>H = 0 </p><ul style="display: flex;"><li style="flex:1">d = 1 </li><li style="flex:1">H = 0 </li></ul><p></p><p><strong>Transfer matrix method </strong></p><p>Reduce the problem of calculating the partition function to the problem of finding the eigenvalues of a matrix </p><p>S<sub style="top: 0.2em;">N+1 </sub>= S<sub style="top: 0.2em;">1 </sub></p><p>S<sub style="top: 0.24em;">N+1 </sub>= S<sub style="top: 0.24em;">1 </sub></p><p>Assumption: </p><p>S<sub style="top: 0.2em;">N </sub></p><p>S<sub style="top: 0.21em;">2 </sub></p><p>Z<sub style="top: 0.24em;">Ω</sub>[H, J] = Tr exp<sup style="top: -0.69em;">−βH (H,J,{S }) </sup></p><p>S<sub style="top: 0.22em;">3 </sub></p><p>Ω</p><p>i</p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢀ</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">H<sub style="top: 0.21em;">Ω</sub>(H, J, {S<sub style="top: 0.21em;">i</sub>}) = −H </li><li style="flex:1">S<sub style="top: 0.21em;">i </sub>− J </li></ul><p></p><p>S<sub style="top: 0.21em;">i</sub>S<sub style="top: 0.21em;">j </sub></p><p>&lt;i,j&gt; </p><p>i∈Ω </p><p></p><ul style="display: flex;"><li style="flex:1">h := βH </li><li style="flex:1">K := βJ </li></ul><p></p><p>ꢀ ꢀ </p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢀ</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1"><sub style="top: 0.54em;">i </sub>S<sub style="top: 0.24em;">i</sub>+K </li><li style="flex:1"><sub style="top: 0.54em;">i </sub>S<sub style="top: 0.24em;">i</sub>S<sub style="top: 0.24em;">i+1 </sub></li></ul><p></p><p>Z<sub style="top: 0.37em;">Ω</sub>[h, K] =&nbsp;. . .&nbsp;e<sup style="top: -1em;">h </sup></p><p>S<sub style="top: 0.24em;">1 </sub></p><p>S<sub style="top: 0.24em;">N </sub></p><p></p><ul style="display: flex;"><li style="flex:1">ꢁ</li><li style="flex:1">ꢂ</li></ul><p></p><p>e<sup style="top: -0.6em;">h+K </sup>− λ </p><p>e<sup style="top: -0.6em;">−K </sup></p><p>e<sup style="top: -0.6em;">−h+K </sup>− λ det </p><p>≡ 0 </p><p>Calculation: </p><p>e<sup style="top: -0.6em;">−K </sup></p><p>ꢃ</p><p></p><ul style="display: flex;"><li style="flex:1">⇒ λ<sub style="top: 0.25em;">1,2 </sub>= e<sup style="top: -0.69em;">K</sup>(cosh(h) ± sinh(h)<sup style="top: -0.48em;">2 </sup>+ e<sup style="top: -0.48em;">−4K </sup></li><li style="flex:1">)</li></ul><p></p><p>ꢃ</p><p>⇒ f<sub style="top: 0.25em;">b</sub>(h, K, T) = −Jk<sub style="top: 0.25em;">B</sub>Tlog(cosh(h) +&nbsp;sinh(h)<sup style="top: -0.48em;">2 </sup>+ e<sup style="top: -0.48em;">−4K</sup>) </p><p><strong>Spatial correlation in one dimension (T &gt; 0) </strong></p><p></p><ul style="display: flex;"><li style="flex:1">H = 0 </li><li style="flex:1">d = 1 </li></ul><p></p><p>Definition: two point correlation function </p><p>G(i, j) := ꢁ(S<sub style="top: 0.24em;">i </sub>− ꢁS<sub style="top: 0.24em;">i</sub>ꢂ)(S<sub style="top: 0.24em;">j </sub>− ꢁS<sub style="top: 0.24em;">j</sub>ꢂ)ꢂ = ꢁS<sub style="top: 0.24em;">i</sub>S<sub style="top: 0.24em;">j</sub>ꢂ − ꢁS<sub style="top: 0.24em;">i</sub>ꢂꢁS<sub style="top: 0.24em;">j</sub>ꢂ </p><p>G(i, i + j) = ꢁS<sub style="top: 0.24em;">i</sub>S<sub style="top: 0.24em;">i+j</sub>ꢂ = (tanh(K))<sup style="top: -0.69em;">j </sup></p><p>G(i, i + j) = e<sup style="top: -0.69em;">−jlog(coth(K)) </sup>≡ e<sup style="top: -0.69em;">−j/ξ </sup></p><p>1</p><p>J/(k<sub style="top: 0.16em;">B</sub>T) </p><p>∼<br>⇒ ξ = </p><p>1/2 e <br>=</p><p>log(coth)K)) </p><p></p><ul style="display: flex;"><li style="flex:1">H = 0 </li><li style="flex:1">d = 2 </li></ul><p></p><p><strong>Onsager solution </strong></p><p>Columns → </p><p>3</p><p>Notation and boundary conditions: </p><p>... </p><p>n</p><p>2</p><p>1</p><p>n + 1 ≡ 1 </p><p>1</p><p>2</p><p>µ<sub style="top: 0.24em;">α </sub>= {s<sub style="top: 0.24em;">1</sub>, s<sub style="top: 0.24em;">2</sub>, . . . , s<sub style="top: 0.24em;">n</sub>}<sub style="top: 0.24em;">αth row </sub></p><p>s<sub style="top: 0.24em;">n+1 </sub>= s<sub style="top: 0.24em;">1 </sub>, µ<sub style="top: 0.24em;">n+1 </sub>= µ<sub style="top: 0.24em;">1 </sub></p><p>3</p><p>N = n<sup style="top: -0.69em;">2 </sup></p><p>n</p><p>Elements of the Hamiltonian: </p><p>n + 1 ≡ 1 </p><p>n</p><p>ꢀ</p><p>E(µ, µ<sup style="top: -0.61em;">′</sup>) = −ǫ </p><p>s<sub style="top: 0.21em;">k</sub>s<sup style="top: -0.61em;">′</sup><sub style="top: 0.36em;">k </sub></p><p>k=1 </p><p></p><ul style="display: flex;"><li style="flex:1">n</li><li style="flex:1">n</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢀ</li></ul><p></p><p>E(µ) = −ǫ </p><p>s<sub style="top: 0.23em;">k</sub>s<sub style="top: 0.23em;">k+1 </sub>− H </p><p>s<sub style="top: 0.23em;">k </sub></p><p>$$2$$</p><p></p><ul style="display: flex;"><li style="flex:1">k=1 </li><li style="flex:1">k=1 </li></ul><p></p><p>Partition function: </p><p>ꢀ ꢀ </p><p>ꢀ</p><p>n</p><p><sub style="top: 0.44em;">α=1</sub>[E(µ<sub style="top: 0.19em;">α</sub>,µ<sub style="top: 0.19em;">α+1</sub>)+E(µ<sub style="top: 0.19em;">α</sub>)] </p><p>Z<sub style="top: 0.3em;">Ω</sub>[H, T] =&nbsp;. . .&nbsp;e<sup style="top: -0.82em;">−β </sup></p><p>µ<sub style="top: 0.2em;">1 </sub></p><p>µ<sub style="top: 0.2em;">n </sub></p><p>−β[E(µ,µ<sup style="top: -0.51em;">′</sup>)+E(µ)] </p><p>ꢁµ|P|µ<sup style="top: -0.69em;">′</sup>ꢂ := e </p><p></p><ul style="display: flex;"><li style="flex:1">Properties of the matrix P: </li><li style="flex:1">-</li></ul><p>--</p><p>P : 2<sup style="top: -0.69em;">n </sup>× 2<sup style="top: -0.69em;">n</sup>matrix Z<sub style="top: 0.24em;">Ω</sub>[H, T] = TrP<sup style="top: -0.69em;">n </sup></p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">1</li></ul><p>⇒ lim log(Z<sub style="top: 0.25em;">Ω</sub>[H = 0, T]) =&nbsp;lim log(λ<sub style="top: 0.25em;">max</sub>) </p><p></p><ul style="display: flex;"><li style="flex:1"><sup style="top: -0.06em;">N→∞ </sup>N </li><li style="flex:1"><sup style="top: -0.15em;">n→∞ </sup>n </li></ul><p></p><p>largest eigenvalue of P </p><p></p><ul style="display: flex;"><li style="flex:1">F<sub style="top: 0.23em;">Ω</sub>[0, T] </li><li style="flex:1">−k<sub style="top: 0.23em;">B</sub>TlogZ<sub style="top: 0.23em;">Ω</sub>[0, T ] </li></ul><p></p><p>N(Ω) <br>1<br>= −k<sub style="top: 0.23em;">B</sub>T lim log(λ<sub style="top: 0.23em;">max </sub></p><p><sup style="top: -0.15em;">n→∞ </sup>n </p><p></p><ul style="display: flex;"><li style="flex:1">f<sub style="top: 0.23em;">b</sub>[H = 0, T] =&nbsp;lim </li><li style="flex:1">= lim </li><li style="flex:1">)</li></ul><p>N(Ω)→∞ N(Ω) </p><p>N(Ω)→∞ </p><p>ꢄ</p><p>π</p><p>ꢅ</p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">1</li></ul><p></p><ul style="display: flex;"><li style="flex:1">⇒ βf<sub style="top: 0.26em;">b</sub>[0, T] = − log (2 cosh 2βǫ) − </li><li style="flex:1">dφ log 1&nbsp;+ 1&nbsp;− κ<sup style="top: -0.48em;">2</sup>sin<sup style="top: -0.48em;">2</sup>φ </li></ul><p></p><p>2π </p><p>2</p><p>0</p><p>κ = 2[cosh 2φ coth2φ]<sup style="top: -0.69em;">−1 </sup></p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    33 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us