Investigating the Effects of Altitude and Flap Setting on the Specific Excess Power of a PA-28-161 Piper Warrior By Tjimon Meric Louisy A thesis submitted to the College of Engineering and Science of Florida Institute of Technology In partial fulfillment of the requirements For the degree of Master of Science in Flight Test Engineering Melbourne, Florida December 2019 We the undersigned committee hereby approve the attached thesis, “Investigating the Effects of Altitude and Flap Setting on the Specific Excess Power of a PA-28-161 Piper Warrior”, by Tjimon Meric Louisy. _________________________________________________ Brian A. Kish, Ph.D. Assistant Professor Aerospace, Physics and Space Sciences Major Advisor _________________________________________________ Isaac Silver, Ph.D. Associate Professor College of Aeronautics _________________________________________________ Ralph Kimberlin, Dr. Ing Professor Aerospace, Physics and Space Sciences _________________________________________________ Daniel Batcheldor Professor and Department Head Aerospace, Physics and Space Sciences Abstract Investigating the Effects of Altitude and Flap Configuration on the Specific Excess Power of a PA-28-161 Piper Warrior Tjimon Meric Louisy Advisor: Brian A. Kish, Ph.D. The high number of General Aviation (GA) accidents attributed to Loss of Control suggests that GA pilots are lacking low speed awareness and are unable to appropriately recognize when the aircraft is in a low energy state. There is, therefore, an urgent need for the development of an energy management system which is applicable to GA aircraft that can alert the pilot in situations of low energy conditions and recommends to the pilot the appropriate corrective action to restore conditions to a safe energy state. This will require the development of an algorithm that governs this energy management system that considers a comprehensive understanding of the performance capabilities of GA aircraft, particularly the ability of the aircraft to progress from one energy state to another. Given that low energy conditions are the primary concern, the aircraft’s ability to progress from a low energy state to a higher energy state, or the aircraft’s specific excess power (Ps), will be the parameter of most interest. The focus of this research study was the testing of a PA-28-161 Piper Warrior to develop an understanding of the effects of altitude and flap configuration on the ability of the aircraft to change its energy state. Level accelerations and level decelerations iii were performed and used to determine the Ps for the aircraft at various altitudes and configurations. The objectives of the test program were to generate Ps curves for each altitude and configuration, compare the curves obtained, and determine trends that could help model the Ps of the aircraft under any operating conditions. The results of the test program showed that there was an inverse relationship between specific excess power and altitude for both the clean-flap and full flaps configurations. The best climb speed for the aircraft was approximately 79 KIAS in the clean configuration and 62 KIAS in the full flaps configuration. Furthermore, extending the flaps resulted in a significant decrease in the maximum specific excess power of the aircraft, with the maximum specific excess power in the full flaps configuration being approximately 200 ft/min less than the maximum specific excess power in the clean configuration for all altitudes investigated. The best glide speed was observed to be 75 KIAS in the clean configuration. The data collected and trends observed will be valuable in the development of an algorithm for a GA energy management system. Further investigation into the Ps with the flaps deployed and comparison between the trends observed on the PA-28-161 with other common GA aircraft parameters will also be required. iv Table of Contents Abstract .............................................................................................................................. iii Table of Contents ................................................................................................................. v List of Figures ..................................................................................................................... vii List of Tables ....................................................................................................................... xi List of Abbreviations and Symbols ...................................................................................... xii Acknowledgements........................................................................................................... xiv Dedication ........................................................................................................................ xvi Section 1 Introduction......................................................................................................... 1 Section 2 Test Methods and Materials ...............................................................................14 2.1 Test Aircraft .............................................................................................................14 2.2 Instrumentation .......................................................................................................15 2.3 Flight Log ..................................................................................................................16 2.4 Flight Test Locations and Crew .................................................................................17 Section 3 Data Reduction Methods ....................................................................................18 3.1 Data Requirements...................................................................................................18 3.2 Test Procedures........................................................................................................19 3.3 Data Reduction.........................................................................................................21 Section 4 Results ................................................................................................................32 4.1 Ps Plots (풂풔풔풖풎풆 풅풉/풅풕 = ퟎ) .................................................................................32 v 4.1.1 Steady-Level Accelerations ................................................................................32 4.1.2 Steady-Level Decelerations ................................................................................51 4.2 Comparison to POH ..................................................................................................58 4.3 Ps Plots (풅풉/풅풕) component included ......................................................................59 4.3.1 Steady-Level Accelerations ................................................................................60 4.3.2 Steady-Level Decelerations ................................................................................64 Section 5 Conclusions and Future Work .............................................................................68 5.1 Conclusions ..............................................................................................................68 5.2 Recommendations and Future Works .......................................................................73 References .........................................................................................................................76 Appendix A: Flight Test Data ..............................................................................................78 Appendix B: Supplementary Graphs ...................................................................................98 vi List of Figures Figure 1: Loss of control in flight accidents and fatalities in GA 2011-2015 [2] ..................... 2 Figure 2 Fatal accidents per aircraft upset event types 2011-2015 [2] ................................. 3 Figure 3: Altitude-velocity diagram showing lines of constant specific Energy (Es) [5] .......... 7 Figure 4: Sample Ps Curves and Resulting Constant Ps Contours [9] ....................................10 Figure 5: Specific Total and Modified Total Energy Error Rate during approach [10] ...........12 Figure 6 PA-28-161 Piper Warrior – N618FT .......................................................................14 Figure 7: Test Locations [12] ..............................................................................................17 Figure 8: CAS vs Time (First 15s) .........................................................................................23 Figure 9: CAS vs Time (16s Onwards) ..................................................................................24 Figure 10: Pressure Altitude vs Time ..................................................................................25 Figure 11: Modeling Pressure Altitude vs Time ...................................................................27 Figure 12: Ps vs CAS Level-Acceleration ..............................................................................30 Figure 13: Ps vs CAS Level-Acceleration (풅풉/풅풕 ≠ ퟎ) ........................................................30 Figure 14: : Ps vs CAS Level-Deceleration ............................................................................31 Figure 15: Ps vs CAS for Clean Configuration Level-Accelerations ........................................32 Figure 16: : Ps vs CAS for Full Flaps Configuration Level-Accelerations ................................34
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages115 Page
-
File Size-