Betti Numbers of Finite Volume Orbifolds 10

Betti Numbers of Finite Volume Orbifolds 10

<p><strong>BETTI NUMBERS OF FINITE VOLUME ORBIFOLDS </strong></p><p>IDDO SAMET <br>Abstract. We prove that the Betti numbers of a negatively curved orbifold are linearly bounded by its volume, generalizing a theorem of Gromov which establishes this bound for manifolds.&nbsp;An immediate corollary is that Betti numbers of a lattice in a rank-one Lie group are linearly bounded by its co-volume. </p><p>1. Introduction </p><p>Let X be a Hadamard manifold, i.e. a connected, simply-connected, complete Riemannian manifold of non-positive curvature normalized such that −1 ≤ K ≤ 0. Let&nbsp;Γ be a discrete subgroup of Isom(X). If Γ is torsion-free then X/Γ is a Riemannian manifold. If Γ has torsion elements, then X/Γ has a structure of an orbifold.&nbsp;In both cases, the Riemannian structure defines the volume of X/Γ. <br>An important special case is that of symmetric spaces X = K\G, where G is a connected semisimple Lie group without center and with no compact factors, and K is a maximal compact subgroup.&nbsp;Then X is non-positively curved, and G is the connected component of Isom(X). In this case, X/Γ has finite volume iff Γ is a lattice in G. The&nbsp;curvature of X is non-positive if rank(G) ≥ 2, and is negative if rank(G) = 1. </p><p>In many cases, the volume of negatively curved manifold controls the complexity of its topology. A manifestation of this phenomenon is the celebrated theorem of Gromov [3,&nbsp;10] stating that if X has sectional curvature −1 ≤ K &lt; 0 then </p><p>n</p><p>∑</p><p></p><ul style="display: flex;"><li style="flex:1">(1) </li><li style="flex:1">b<sub style="top: 0.1492em;">i</sub>(X/Γ) ≤ C<sub style="top: 0.1492em;">n </sub>· vol(X/Γ), </li></ul><p></p><p>i=0 </p><p>where b<sub style="top: 0.1492em;">i </sub>are Betti numbers w.r.t. to coefficients in any field, and C<sub style="top: 0.1492em;">n </sub>is a constant depending only on n = dim(X). This inequality also holds when −1 ≤ K ≤ 0 if X is analytic and has no Euclidean factors. </p><p>Date: November 2012. The research was done as part of the author’s PhD at the Hebrew University under the supervision of Prof.&nbsp;Gelander and was supported by the European Research Council (ERC) grant of Prof. Gelander / grant agreement 203418. </p><p>1</p><ul style="display: flex;"><li style="flex:1">BETTI NUMBERS OF FINITE VOLUME ORBIFOLDS </li><li style="flex:1">2</li></ul><p></p><p>It should be noted, that since X is a K(Γ, 1), the b<sub style="top: 0.15em;">i</sub>’s are the Betti number of the homology of the group Γ. </p><p>In certain cases, volume imposes much stronger restriction on topology. Namely,&nbsp;it was proved by Gelander [8] that if X is a symmetric space of non-compact type and Γ is a non-uniform torsion-free arithmetic lattice then X/Γ is homotopy-equivalent to a simplicial complex whose complexity is restricted: the number of vertices in this complex is bounded by a constant (depending on X) times the volume of X/Γ, and the valence of each vertex is bounded by a constant depending only on X. This&nbsp;equivalence immediately implies Gromov’s theorem. By Margulis’s arithmeticity theorem, if rank(X) ≥ 2 then every lattice Γ is arithmetic, and thus Gelander’s theorem holds for all such spaces. <br>Gelander has also proved that if Γ torsion-free, then Γ has a presentation for which the number of generators and the total length of the relations is bounded linearly by the volume of X/Γ (with constants depending on X). Recently, Gelander [9] extended this result and proved that even for lattices with torsion, the minimal number of generators of Γ is bounded from above by a constant (depending on G) times the volume of X/Γ. In particular, this provides a linear bound to the first Betti number of Γ. </p><p>The main theorem proved in this paper is a generalization of Gromov’s theorem to the case where Γ has torsion, in other words, to orbifolds of the form X/Γ. We prove </p><p><strong>Theorem 1.1. </strong>Let X be a Hadamard manifold of dimension n with sectional curvature −1 ≤ K &lt; 0. Then&nbsp;for every discrete group Γ &lt; </p><p>Isom(X), </p><p>∑</p><p></p><ul style="display: flex;"><li style="flex:1">(2) </li><li style="flex:1">rk H<sub style="top: 0.1492em;">i</sub>(X/Γ, A) ≤ C<sub style="top: 0.1492em;">n </sub>· vol(X/Γ), </li></ul><p></p><p>i</p><p>where the coefficient ring A is an integral domain of characteristic 0, and C<sub style="top: 0.15em;">n </sub>is a constant depending only on n. </p><p>There are several (co)-homology theories for orbifolds which aim at capturing the homology of the space, as well as that of the group Γ. Our technique is mainly geometric; we therefore treat X/Γ as a topological quotient space, and the homology is that of this space.&nbsp;Furthermore, the action of finite subgroups of Γ introduces torsion to homology groups, which may depend on the structure of these finite groups.&nbsp;Since we are not able to bound the size of finite groups by the orbifold volume, our result is restricted to homology with coefficients in an integral domain with characteristic 0. </p><p></p><ul style="display: flex;"><li style="flex:1">BETTI NUMBERS OF FINITE VOLUME ORBIFOLDS </li><li style="flex:1">3</li></ul><p></p><p>The case A = Q is of particular importance.&nbsp;The homology of the stabilizers in G of points of X is trivial, because stabilizers are finite groups. It&nbsp;follows that H<sub style="top: 0.1492em;">i</sub>(X/Γ, Q) = H<sub style="top: 0.1492em;">i</sub>(Γ, Q) (see e.g.&nbsp;[6], p.&nbsp;174). </p><p>Hence, we can restate (2) as a bound on Betti numbers (with rational coefficients) of the group Γ: </p><p>∑</p><p>b<sub style="top: 0.15em;">i</sub>(Γ, Q) ≤ C<sub style="top: 0.15em;">n </sub>· vol(X/Γ). </p><p>i</p><p>Theorem 1.1 and Gromov’s theorem can be rephrased as an asymptotical statement:&nbsp;if Γ<sub style="top: 0.1492em;">n </sub>is a sequence of groups of isometries acting discretely on X (with the appropriate assumptions) then the growth of b<sub style="top: 0.1492em;">i</sub>(Γ<sub style="top: 0.1492em;">n</sub>) is at most linear in vol(X/Γ<sub style="top: 0.1492em;">n</sub>). <br>A theorem of Lu¨ck [12] describes the asymptotic behavior of a nested sequence (Γ<sub style="top: 0.1492em;">n</sub>)<sub style="top: 0.1492em;">n≥1 </sub>of normal finite index subgroups of Γ, assuming that </p><p>∩</p><p>X/Γ is compact and&nbsp;Γ<sub style="top: 0.1492em;">n </sub>= 1.&nbsp;In this case, b<sub style="top: 0.15em;">i</sub>(X/Γ<sub style="top: 0.15em;">n</sub>) </p><ul style="display: flex;"><li style="flex:1">(3) </li><li style="flex:1">lim </li><li style="flex:1">= b<sup style="top: -0.5092em;">(</sup><sub style="top: 0.2558em;">i</sub><sup style="top: -0.5092em;">2)</sup>(X; Γ), </li></ul><p><sup style="top: -0.085em;">n→∞ </sup>vol(X/Γ<sub style="top: 0.15em;">n</sub>) </p><p>where the right-hand-side is the L<sup style="top: -0.3617em;">2</sup>-Betti number.&nbsp;Hence, the growth is linear exactly when b<sup style="top: -0.5092em;">(</sup><sub style="top: 0.2558em;">i</sub><sup style="top: -0.5092em;">2)</sup>(X; Γ)&nbsp;is non-zero. It was proved by Olbrich [15] that if X is a symmetric space, then b<sup style="top: -0.5092em;">(</sup><sub style="top: 0.2558em;">i</sub><sup style="top: -0.5092em;">2) </sup>is zero unless, perhaps, i = dim(X)/2. <br>In a recent joint work with Abert, Bergeron, Biringer, Gelander, <br>Nikolov and Raimbault [1,2] we prove (3) holds for any sequence of uniform irreducible lattices (Γ<sub style="top: 0.15em;">n</sub>)<sub style="top: 0.15em;">n≥1 </sub>(possibly with torsion) in a semisimple Lie group G, assuming that vol(X/Γ<sub style="top: 0.1492em;">n</sub>) → ∞ and that G has property (T) and rank ≥ 2. However,&nbsp;one cannot expect (3) to hold for rankone locally symmetric spaces (whether manifolds or orbifolds).&nbsp;For </p><p>n</p><p>instance, if Γ is a uniform lattice in Isom(H ) that surjects on the free group of rank 2, then finite index subgroups of Γ corresponding to subgroups of Z∗Z have first Betti numbers that grow linearly with volume, </p><p>whereas b<sup style="top: -0.5092em;">(</sup><sub style="top: 0.2442em;">1</sub><sup style="top: -0.5092em;">2) </sup>= 0. </p><p><strong>Characteristic </strong>p<strong>. </strong>It is natural to whether Theorem 1.1 holds for co- </p><p>efficients with positive characteristic, and particularly for coefficients in the field F<sub style="top: 0.1492em;">p</sub>. The&nbsp;author does not know of any counterexample in </p><p>this case. In fact, there is but a single place in the proof that relies on the characteristic assumption, namely Proposition 4.11.&nbsp;Proving this proposition for coefficients in F<sub style="top: 0.15em;">p </sub>boils down to the problem of uniformly bounding the F<sub style="top: 0.1492em;">p</sub>-Betti numbers of a spherical orbifold, as posed in the following question: </p><p></p><ul style="display: flex;"><li style="flex:1">BETTI NUMBERS OF FINITE VOLUME ORBIFOLDS </li><li style="flex:1">4</li></ul><p></p><p>Does there exist a constant D depending on k (and possibly on p?) such&nbsp;that for every finite group G acting linearly on a sphere S<sup style="top: -0.3617em;">k</sup>, and for every i, b<sub style="top: 0.1492em;">i</sub>(S<sup style="top: -0.3617em;">k</sup>/G, F<sub style="top: 0.1492em;">p</sub>) ≤ D? </p><p>More precisely, an affirmative answer to the question for spheres of dimensions ≤ n − 1 would imply that Theorem 1.1 holds with coeffi- cients in F<sub style="top: 0.1492em;">p </sub>for manifolds of dimension n. In particular, we can obtain </p><p>the following partial results: <br>(1) The theorem holds with F<sub style="top: 0.15em;">p </sub>coefficients for manifolds of dimensions 2 or 3 (with a constant C<sub style="top: 0.1492em;">n </sub>independent of p). This is because — up to homeomorphism — there are only finitely many possible quotients of 1-spheres and 2-spheres by finite groups<sup style="top: -0.3867em;">1</sup>. <br>(2) If p does not divide the order of any finite subgroup of Γ, then the inequality (2) holds for A = F<sub style="top: 0.15em;">p </sub>(with the constant C<sub style="top: 0.15em;">n </sub></p><p>of the characteristic 0 case).&nbsp;This follows from the fact that b<sub style="top: 0.1492em;">i</sub>(S<sup style="top: -0.3617em;">k</sup>/G, F<sub style="top: 0.1492em;">p</sub>) ≤ 1 whenever p is prime to the order of G (see </p><p>remark at the end of section 4). </p><p><strong>Acknowledgments. </strong>It is my pleasure to thank Tsachik Gelander, my Ph.D. advisor, for his support, encouragement and advice.&nbsp;I also thank the referee for carefully reading the manuscript, and for his invaluable suggestions for improving the exposition. </p><p>2. Preliminaries </p><p>2.1. <strong>Notation. </strong>Let X be an n-dimensional Hadamard manifold, i.e. a connected, simply-connected complete Riemannian manifold of nonpositive sectional curvature. We assume that the curvature is bounded and that the metric is normalized such that −1 ≤ K ≤ 0. If&nbsp;K &lt; 0 we say the manifold is negatively curved. Most of our results apply to this case. </p><p>2.1.1. We introduce notation and review some facts about isometries of Hadamard spaces.&nbsp;A standard reference for this is [5, Ch.&nbsp;II.6] or [3, §6]. <br>Let γ be an isometry of X. The&nbsp;displacement function d<sub style="top: 0.15em;">γ </sub>: X → <br>R<sup style="top: -0.3617em;">≥0</sup>, d<sub style="top: 0.1492em;">γ</sub>(x) = d(γx, x), is a convex function in the sense that for every geodesic c : R → X, d<sub style="top: 0.1492em;">γ </sub>◦ c is a convex function.&nbsp;The set of minimal displacement is defined </p><p>Min(γ) = {x ∈ X : d<sub style="top: 0.1492em;">γ</sub>(x) = inf d<sub style="top: 0.1492em;">γ</sub>}; </p><p><sup style="top: -0.3217em;">1</sup>The underlying space of a 1-dimensional spherical orbifold is 1-sphere or an interval, and the underlying space of a 2-dimensional spherical orbifold is a 2-sphere, a disc, or a projective plane. </p><p></p><ul style="display: flex;"><li style="flex:1">BETTI NUMBERS OF FINITE VOLUME ORBIFOLDS </li><li style="flex:1">5</li></ul><p></p><p>it is a closed and convex subset of X. <br>An isometry of X is elliptic if it fixes a point in X, hyperbolic if it does not fix a point in X but d<sub style="top: 0.1492em;">γ </sub>attains minimum in X, and parabolic otherwise. The&nbsp;first two types are called semisimple. An&nbsp;isometry is elliptic (resp.&nbsp;hyperbolic, parabolic) iff any a positive power of it is elliptic (resp. hyperbolic, parabolic). <br>If γ is a non-trivial elliptic isometry then Min(γ) is a complete totally geodesic submanifold of lower dimension in X. If&nbsp;γ is hyperbolic and K &lt; 0 then Min(γ) is a geodesic — the axis of γ — on which γ acts by translations.&nbsp;If γ is a parabolic isometry then it fixes a point in the boundary of points at infinity.&nbsp;Explicitly, there is a geodesic ray </p><p>+</p><p>c : R → X such that c and γ c&nbsp;are asymptotic, i.e., d(c(t), γ c(t)) is uniformly bounded. If K &lt; 0 then γ fixes a unique point at infinity. </p><p>Let C be a closed convex subset of X, and let x ∈ X. Since&nbsp;X has non-positive curvature, there is a unique point π<sub style="top: 0.1492em;">C</sub>(x) ∈ C that is closest to x in C. This is called the projection to C. The projection is distance decreasing, i.e.&nbsp;d(π<sub style="top: 0.1492em;">C</sub>(x), π<sub style="top: 0.1492em;">C</sub>(y)) ≤ d(x, y). Now&nbsp;suppose C is γ-invariant. Then&nbsp;γπ<sub style="top: 0.15em;">C</sub>(x) = π<sub style="top: 0.15em;">C</sub>(γx). It&nbsp;follows that d<sub style="top: 0.15em;">γ</sub>(π<sub style="top: 0.15em;">C</sub>(x)) ≤ d<sub style="top: 0.15em;">γ</sub>(x). In particular, Min(γ) ∩ C is non-empty. </p><p></p><ul style="display: flex;"><li style="flex:1">If γ<sub style="top: 0.1492em;">0</sub>, γ<sub style="top: 0.1492em;">1 </sub>are commuting semisimple isometries, then γ<sub style="top: 0.1492em;">i </sub>keeps Min(γ<sub style="top: 0.1492em;">1−i </sub></li><li style="flex:1">)</li></ul><p>invariant (i = 0, 1). It&nbsp;follows that Min(γ<sub style="top: 0.1492em;">0</sub>) ∩ Min(γ<sub style="top: 0.1492em;">1</sub>) is non-empty, and kept invariant by both isometries.&nbsp;More generally, if A is a set of </p><p>∩</p><p>commuting semisimple isometries then&nbsp;<sub style="top: 0.2908em;">γ∈A </sub>Min(γ) is non-empty and A-invariant. In&nbsp;particular, if K &lt; 0 then two commuting isometries have the same axis. </p><p>2.1.2. Let Γ be a group of isometries of X acting properly discontinuously, that is, a subgroup of Isom(X) which is discrete with respect to the compact-open topology.&nbsp;If Γ is torsion-free, then X/Γ has a structure of Riemannian manifold.&nbsp;More generally, Γ may have finite point-stabilizers, and X/Γ is endowed a structure of a Riemannian orbifold. An orbifold has an atlas of maps locally identifying it with a quotient of an open set in X by a finite group of isometries. Orbifolds were originally introduced and studied by Satake [17] who named them V-manifolds. </p><p>2.1.3. We&nbsp;have the canonical projection π : X → X/Γ. Let inj-rad(x), x ∈ X/Γ, be the local injectivity radius at x. Let&nbsp;us denote d<sub style="top: 0.1492em;">Γ</sub>(x) = </p><p>12</p><p>inf<sub style="top: 0.155em;">γ∈Γ\{1} </sub>d<sub style="top: 0.1492em;">γ</sub>(x). We&nbsp;recall that inj-rad(x) =&nbsp;d<sub style="top: 0.1492em;">Γ</sub>(x˜), with π(x˜) = x. The ε-thick part of X/Γ is defined </p><p>ε</p><p>(X/Γ) =&nbsp;{x ∈ X/Γ : inj-rad(x) ≥ }. </p><p>≥ε </p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1">BETTI NUMBERS OF FINITE VOLUME ORBIFOLDS </li><li style="flex:1">6</li></ul><p></p><p>It is the image of the set {x ∈ X : d<sub style="top: 0.15em;">Γ</sub>(x) ≥ ε} under the canonical projection. <br>We remark that if X is a point, its injectivity radius is infinity. </p><p>2.1.4. We&nbsp;will make all volume calculations using discrete estimates. <br>Say a set N ⊂ X is δ-discrete if d(x, y) ≥ δ for x = y ∈ N. For&nbsp;ε &gt; 0 </p><p≯</p><p>we define ε − ess-vol(X/Γ) as the supremal cardinality of a 2ε-discrete set of points N in the 2ε-thick part of X/Γ. This is the supremum of the number of disjoint injected balls of radius ε. It is reasonable to set ε − ess-vol(point) = 1; this is consistent with definitions for positive dimension. This definition is introduced in [3, §10.4]. <br>Clearly, ε − ess-vol(X/Γ) is non-decreasing as ε decreases. In&nbsp;the case dim&nbsp;X &gt; 0, it is easy to verify the useful inequality </p><p>ε</p><p>k · ε − ess-vol(X/Γ) ≤ −&nbsp;ess-vol(X/Γ). </p><p>k</p><p>Since curvature is non-positive, a ball of radius ε in X has volume ≥ V (ε, n) — the volume of a ball of radius ε in Euclidean n-space. Thus we have </p><p>ε − ess-vol(X/Γ) ≤ V (ε, n)<sup style="top: -0.4117em;">−1 </sup>· vol(X/Γ). <br>We will utilize these two inequalities freely without further reference. 2.1.5. For&nbsp;a point x ∈ X, let Γ<sub style="top: 0.15em;">x </sub>be the stabilizer of x in Γ.&nbsp;A subgroup of Γ is finite if and only if it is contained in Γ<sub style="top: 0.1492em;">x</sub>, for some x ∈ X. <br>For a submanifold Y ⊆ X, we denote </p><p>Γ<sub style="top: 0.1492em;">Y </sub>= {γ ∈ Γ : γY = Y }, and Γ<sup style="top: -0.4117em;">1</sup><sub style="top: 0.2458em;">Y </sub>= {γ ∈ Γ<sub style="top: 0.1492em;">Y </sub>: γ|<sub style="top: 0.1492em;">Y </sub>= 1}. <br>The latter is a finite group. <br>If Γ<sup style="top: -0.3617em;">1</sup><sub style="top: 0.2517em;">Y </sub>is not trivial, then Γ<sub style="top: 0.15em;">Y </sub>cannot be identified as a subgroup of <br>Isom(Y ). However,&nbsp;the action of Γ<sub style="top: 0.1492em;">Y </sub>on Y factors through Γ<sub style="top: 0.1492em;">Y </sub>/Γ<sup style="top: -0.3617em;">1</sup><sub style="top: 0.2517em;">Y </sub>. In this case, the terms Y/Γ<sub style="top: 0.1492em;">Y </sub>and d<sub style="top: 0.1492em;">Γ </sub>, and consequentially inj-rad and </p><p>Y</p><p>ε − ess-vol(Y/Γ<sub style="top: 0.1492em;">Y </sub>), will refer to — by abuse of notation — the action Γ<sub style="top: 0.15em;">Y </sub>/Γ<sup style="top: -0.3617em;">1</sup><sub style="top: 0.2517em;">Y </sub>on Y . </p><p>2.2. <strong>Margulis lemma. </strong>We denote ∆<sub style="top: 0.15em;">ε</sub>(x) = {γ ∈ Γ : d<sub style="top: 0.15em;">γ</sub>(x) &lt; ε} and </p><p>Γ<sub style="top: 0.1492em;">ε</sub>(x) = ⟨∆<sub style="top: 0.1492em;">ε</sub>(x)⟩. The following statement about groups generated by “small motions” is an amalgamation of the Margulis Lemma [3] and the Jordan Theorem [11]. </p><p><strong>Theorem 2.1. </strong>Let X be a Hadamard manifold of dimension n with −1 ≤ K ≤ 0. There&nbsp;are constants depending only on n, ε<sub style="top: 0.15em;">n </sub>&gt; 0 and m<sub style="top: 0.15em;">n </sub>∈ N such that for every discrete subgroup Γ &lt; Isom(X) and every </p><p>x ∈ X, Γ<sub style="top: 0.1492em;">ε </sub>(x) contains a normal nilpotent subgroup N of index ≤ m<sub style="top: 0.1492em;">n</sub>. </p><p>n</p><p>If Γ<sub style="top: 0.1492em;">ε </sub>(x) is finite, N is in fact abelian. </p><p>n</p><p></p><ul style="display: flex;"><li style="flex:1">BETTI NUMBERS OF FINITE VOLUME ORBIFOLDS </li><li style="flex:1">7</li></ul><p></p><p>We henceforth refer to the nilpotent subgroup stipulated by this theorem as “the normal nilpotent subgroup of Γ<sub style="top: 0.1492em;">ε</sub>(x)”. </p><p><strong>Remark. </strong>The proof of the Margulis Lemma (cf. [3, §8.3]) is based on the fact that there are generators of N in a neighborhood of identity in which commutators are contracting with respect to some norm.&nbsp;It follows from this that for every δ &gt; 0 there is K = K(δ, n) such that if γ is a k-fold commutator of these generators with k ≥ K then d<sub style="top: 0.1492em;">γ</sub>(x) &lt; δ. </p><p>The following lemma is proved in [3, Lemma 7.4]. </p><p><strong>Lemma 2.2. </strong>Let N be a nilpotent group of isometries acting on a closed convex subset of X. Let N<sub style="top: 0.1492em;">s </sub>be the set of semisimple isometries </p><p>∩</p><p>in N. Then&nbsp;N<sub style="top: 0.15em;">s </sub>is a normal subgroup of N, and&nbsp;<sub style="top: 0.2908em;">γ∈N </sub>Min(γ) is a non-empty N-invariant set. </p><p><strong>Lemma 2.3. </strong>Let 0 &lt; ε &lt; ε<sub style="top: 0.1492em;">n</sub>, and let N be the normal nilpotent subgroup of index ≤ m<sub style="top: 0.1492em;">n </sub>in Γ<sub style="top: 0.1492em;">ε</sub>(x). Then N is generated by elements in </p><p>∆</p><p><sub style="top: 0.1492em;">2m ε</sub>(x). If Γ<sub style="top: 0.1492em;">ε</sub>(x) is infinite then there is an element of infinite order </p><p>n</p><p>in N ∩ ∆<sub style="top: 0.15em;">2m ε</sub>(x). Furthermore,&nbsp;if Γ<sub style="top: 0.15em;">ε</sub>(x) contains parabolic elements </p><p>n</p><p>then this element can be taken to be parabolic. </p><p>Proof. Recall that if G is a group generated by a set of elements S, and H ≤ G is a subgroup of index r, then H is generated by words of length &lt; 2r in the generators S. Indeed,&nbsp;if T = {t<sub style="top: 0.15em;">1</sub>, . . . , t<sub style="top: 0.15em;">r</sub>} is a transversal (i.e.&nbsp;a set of representatives of right cosets) of H in G, then H is generated by TST<sup style="top: -0.3617em;">−1 </sup>∩ H. Moreover, if T is a Schreier transversal (w.r.t. the&nbsp;generating set S) then its elements have length at most r−1 (for the last two statements see e.g. [13, §2.3]). Hence, H is generated by words of length 2(r − 1) + 1 &lt; 2r. <br>Let N be the normal nilpotent subgroup of Γ<sub style="top: 0.1492em;">ε</sub>(x). Since&nbsp;[G : N] ≤ m<sub style="top: 0.1492em;">n</sub>, N is generated by words of length &lt; 2m<sub style="top: 0.1492em;">n </sub>with respect to the generators of Γ<sub style="top: 0.15em;">ε</sub>(x). Hence it is generated by elements in ∆<sub style="top: 0.15em;">2m ε</sub>(x). </p><p>n</p><p>Let N<sub style="top: 0.15em;">s </sub>be the set of semisimple elements in N. By 2.2, N<sub style="top: 0.15em;">s </sub>is a sub- </p><p>∩</p><p></p><ul style="display: flex;"><li style="flex:1">group, and K = </li><li style="flex:1">Min(γ) is non-empty convex and N-invariant. </li></ul><p></p><p>γ∈N<sub style="top: 0.0825em;">s </sub></p><p>Notice that every elliptic element in N fixes K. Since N is infinite, it cannot fix K pointwise, and thus cannot be generated by elliptic elements. Thus, at least one element in N ∩ ∆<sub style="top: 0.1492em;">2m ε</sub>(x) has infinite order. </p><p>n</p><p>If Γ<sub style="top: 0.1492em;">ε</sub>(x) contains a parabolic element, then so does N. In this case, at least one element in N ∩ ∆<sub style="top: 0.1492em;">2m ε</sub>(x) is parabolic, otherwise N = N<sub style="top: 0.1492em;">s</sub>. </p><p>n</p><p>2.3. <strong>Elliptic isometries. </strong>For an elliptic isometry γ we write Fix(γ) for Min(γ). Let Γ be a group of isometries acting discretely on X. We </p><p>∩</p><p>say Y is a singular submanifold if it equals&nbsp;<sub style="top: 0.2908em;">γ∈A </sub>Fix(γ) for a set A ⊂ Γ of elliptic elements. We do not exclude the trivial case Y = X. </p><p></p><ul style="display: flex;"><li style="flex:1">BETTI NUMBERS OF FINITE VOLUME ORBIFOLDS </li><li style="flex:1">8</li></ul><p></p><p>Let Y, Y <sup style="top: -0.3617em;">′ </sup>be two totally geodesic submanifolds in X. If there exists γ ∈ Γ such that Y = γY <sup style="top: -0.3617em;">′ </sup>we say that Y, Y <sup style="top: -0.3617em;">′ </sup>are conjugate. Clearly,&nbsp;if Y is conjugate to a singular submanifold, then Y itself is a singular submanifold. </p><p>n</p><p><strong>Definition 2.4. </strong>An isometry g ∈ G = SO(n) of R is s-stable (s ∈ N) </p><p>if C<sub style="top: 0.1492em;">G</sub>(g<sup style="top: -0.3617em;">i</sup>) = C<sub style="top: 0.1492em;">G</sub>(g) (centralizer in G) and Fix(g) = Fix(g<sup style="top: -0.3617em;">i</sup>) for i = 1, . . . , s. An&nbsp;elliptic isometry γ ∈ Isom(X) is s-stable if the isometry induced on the tangent bundle of a fixed point is s-stable. <br>A singular submanifold Y is s-stable (w.r.t. to&nbsp;Γ) if there exists a subset A ⊂ Γ, such that every γ ∈ A is elliptic s-stable, and Y = </p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    34 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us