Fundamentals of Modern Optics", FSU Jena, Prof

Fundamentals of Modern Optics", FSU Jena, Prof

Script "Fundamentals of Modern Optics", FSU Jena, Prof. T. Pertsch, FoMO_Script_2017-10-10s.docx 1 Fundamentals of Modern Optics Winter Term 2017/2018 Prof. Thomas Pertsch Abbe School of Photonics, Friedrich-Schiller-Universität Jena Table of content 0. Introduction ............................................................................................... 4 1. Ray optics - geometrical optics (covered by lecture Introduction to Optical Modeling) .............................................................................................. 15 1.1 Introduction ......................................................................................................... 15 1.2 Postulates ........................................................................................................... 15 1.3 Simple rules for propagation of light ................................................................... 16 1.4 Simple optical components ................................................................................. 16 1.5 Ray tracing in inhomogeneous media (graded-index - GRIN optics) .................. 20 1.5.1 Ray equation ............................................................................................ 20 1.5.2 The eikonal equation ................................................................................ 22 1.6 Matrix optics ........................................................................................................ 23 1.6.1 The ray-transfer-matrix ............................................................................. 23 1.6.2 Matrices of optical elements ..................................................................... 23 1.6.3 Cascaded elements.................................................................................. 24 2. Optical fields in dispersive and isotropic media ....................................... 25 2.1 Maxwell’s equations ........................................................................................ 25 2.1.1 Adaption to optics ..................................................................................... 25 2.1.2 Temporal dependence of the fields .......................................................... 29 2.1.3 Maxwell’s equations in Fourier domain .................................................... 30 2.1.4 From Maxwell’s equations to the wave equation ...................................... 30 2.1.5 Decoupling of the vectorial wave equation ............................................... 32 2.2 Optical properties of matter ................................................................................. 33 2.2.1 Basics ....................................................................................................... 33 2.2.2 Dielectric polarization and susceptibility ................................................... 36 2.2.3 Conductive current and conductivity......................................................... 38 2.2.4 The generalized complex dielectric function ............................................. 39 2.2.5 Material models in time domain ................................................................ 43 2.3 The Poynting vector and energy balance ........................................................... 45 2.3.1 Time averaged Poynting vector ................................................................ 45 2.3.2 Time averaged energy balance ................................................................ 46 2.4 Normal modes in homogeneous isotropic media ................................................ 49 2.4.1 Transverse waves .................................................................................... 50 2.4.2 Longitudinal waves ................................................................................... 51 2.4.3 Plane wave solutions in different frequency regimes ............................... 52 2.4.4 Time averaged Poynting vector of plane waves ....................................... 58 2.5 The Kramers-Kronig relation ............................................................................... 59 2.6 Beams and pulses - analogy of diffraction and dispersion .................................. 62 2.7 Diffraction of monochromatic beams in homogeneous isotropic media .............. 64 2.7.1 Arbitrarily narrow beams (general case) ................................................... 65 2.7.2 Fresnel- (paraxial) approximation ............................................................. 72 2.7.3 The paraxial wave equation ..................................................................... 76 2.8 Propagation of Gaussian beams ......................................................................... 78 2.8.1 Propagation in paraxial approximation ..................................................... 79 2.8.2 Propagation of Gauss beams with q-parameter formalism ....................... 84 2.8.3 Gaussian optics ........................................................................................ 84 Script "Fundamentals of Modern Optics", FSU Jena, Prof. T. Pertsch, FoMO_Script_2017-10-10s.docx 2 2.8.4 Gaussian modes in a resonator ............................................................... 87 2.9 Dispersion of pulses in homogeneous isotropic media ....................................... 93 2.9.1 Pulses with finite transverse width (pulsed beams) .................................. 93 2.9.2 Infinite transverse extension - pulse propagation ................................... 100 2.9.3 Example 1: Gaussian pulse without chirp ............................................... 101 2.9.4 Example 2: Chirped Gaussian pulse ...................................................... 104 3. Diffraction theory .................................................................................. 108 3.1 Interaction with plane masks ............................................................................. 108 3.2 Propagation using different approximations ...................................................... 109 3.2.1 The general case - small aperture .......................................................... 109 3.2.2 Fresnel approximation (paraxial approximation) .................................... 109 3.2.3 Paraxial Fraunhofer approximation (far field approximation) .................. 110 3.2.4 Non-paraxial Fraunhofer approximation ................................................. 112 3.3 Fraunhofer diffraction at plane masks (paraxial) ............................................... 112 3.4 Remarks on Fresnel diffraction ......................................................................... 117 4. Fourier optics - optical filtering .............................................................. 119 4.1 Imaging of arbitrary optical field with thin lens .................................................. 119 4.1.1 Transfer function of a thin lens ............................................................... 119 4.1.2 Optical imaging using the 2f-setup ......................................................... 120 4.2 Optical filtering and image processing .............................................................. 122 4.2.1 The 4f-setup ........................................................................................... 122 4.2.2 Examples of aperture functions .............................................................. 125 4.2.3 Optical resolution ................................................................................... 126 5. The polarization of electromagnetic waves ........................................... 129 5.1 Introduction ....................................................................................................... 129 5.2 Polarization of normal modes in isotropic media ............................................... 129 5.3 Polarization states ............................................................................................ 130 6. Principles of optics in crystals ............................................................... 132 6.1 Susceptibility and dielectric tensor .................................................................... 132 6.2 The optical classification of crystals .................................................................. 134 6.3 The index ellipsoid ............................................................................................ 135 6.4 Normal modes in anisotropic media .................................................................. 136 6.4.1 Normal modes propagating in principal directions .................................. 137 6.4.2 Normal modes for arbitrary propagation direction .................................. 138 6.4.3 Normal surfaces of normal modes ......................................................... 143 6.4.4 Special case: uniaxial crystals ................................................................ 145 7. Optical fields in isotropic, dispersive and piecewise homogeneous media ........................................................................................................... 148 7.1 Basics ............................................................................................................... 148 7.1.1 Definition of the problem ........................................................................ 148 7.1.2 Decoupling of the vectorial wave equation ............................................. 149 7.1.3 Interfaces and symmetries ..................................................................... 150 7.1.4 Transition conditions .............................................................................

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    194 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us