Differential Calculus

Differential Calculus

A TEX T -B O O K OF DIFFERENTIAL CALCULUS WITH NUMEROU S WORK ED OUT EXAMPLES GANE S B A A A B . NT . (C ) E B ER F E L O ND O N E I C S CIE Y F E D E U SC E M M O TH MATH MAT AL O T , O TH T H MA E IK ER-V EREI IGU G F E CIRC E IC DI P ER E C TH MAT N N , O TH OLO MAT MAT O AL MO , T . FELLOW OF THE U NIVE RSITY OF ALLAHAB AD ’ AND P R FESS R OF E I CS I UEE S C O E G E B E RES O O MATH MAT N Q N LL , NA E N L O N G M A N ! G R E , A N D C O 3 PAT ER TE ND 9 N O S R R OW , L O ON NEW YORK B OMBAY AND AL UTTA , , C C 1 909 A l l r i g h t s r e s e r v e d P E FA E R C . IN thi s work it h as b een my aim to lay before st ud ents a l r orou s and at th e sam e t me s m le ex osit on of stri ct y ig , i , i p p i lculu s nd it c f lic n T th e Differential C a a s hi e app ati o s . h e p resent volu me is inten ded for b eginners and is SO designed r u rem en s of rt f h as to m eet th e eq i t Pa I . o t e C ambridge h m t cal Tri os Ex amin at on an d of th e E xam nations Mat e a i p i , i f n n n r i d E. c . e rees o e s n a U v t es . for th e R A. a S d g I di i i Th e chief ch aracteristics of th e p resent work may be indicated as follows Th e fun damental p rin ciples of th e Differential C alcul u s h ave been based on a p u rely arith met cal fou n ation . Thu s th e var ou s theorems h ave een i d , i b carefully enunciated and their p roofs have been ma de quite n n i l nn t on i e e ent of eometr ca intu ti n . In th s co ec d p d g i o i i , ’ I may sp ecially mention th e chapters on Rolle s Th eorem ’ and Ta lor s Theorem Max ma and M nima a nd Ind eter y , i i , minate F rms 2 Al s ar cle i f ll e o . ( ) mo t every ti s o ow d by wor e out exam les s c all su te for illu strat n th e k d p , p e i y i d i g ar l T r i r c a ter. tic e . here a e al so n umerou s ex ercises n eve y h p (3) A sp ecial cha pter deals with cu rve-tracing and th e im ortant r r s f h - n 4 Th e or er p p ope tie o t e best know curves . ( ) d in which th e ch apters are arran ged is intended to en able th e beginner to stu dy th e Simple geometrical applications of th e Differential C alcul u s immediately after h e h as learnt differen tia i B n t on . (5) Th e mi scellaneou s notes A and are inte ded 5 2 4 6 6 3 vi P REP ACE to give th e ambitious stud en t a glimp se of th e modern l lc ul u s researches in th e Differentia C a . This vol ume is b ased o n my exp erience in teaching th e elements of th e Differenti al C al c u lus to a l arge n u mber of f n element ar u l s . It is therefore throu hou t o a p pi , , g y h racter Bu t as cer ain arts o f it ma be fou n ffi cu lt c a . t , p y d di e nners th e have een m ar e with an a steris and by b gi , y b k d k n may be omitted in a first rea di g . n A few word s may b e said here ab out Ch apter I . I a h m t al oo h ch ro fesses to b e r orou s in it s ma t e a ic b k , w i p ig treatmen t it is essent al that th e efin t ons be carefu ll , i d i i y i n It i r Th s h a een one n th e rese t wor . s wo ded . i s b d p k , be h ever o s le that for th s reason ha ter I . m a ow , p s ib , i , C p y em m a v e foun d h eavy rea ding by some stu dent s . To th y d i c is thi s : If yo u d o not gra sp th e full mean ing of a d efinition in a first rea n l eave it and a fter rea n ha ters II . an d di g , di g C p m h n III . c o e ac to a ter I . and then o u w ll u n ersta b k C p , y i d d th e efin t n r d i io b ette . In wr t n th e resent volume I h ave er ve mu ch hel i i g p , d i d p from two oo i m nu l alc l s v z . th e excell ent l ttle a a o o b k , i , C ’ ’ fferen z ale of Professor Ern esto Pasc al and To h unter s Di i , d ’ Treat se on th e ffer n l u l F r th e h stor cal n te i Di e tial C a c u s . o i i o s in r m l n ha te VIII . a s ell as for most of th e exa es o tha C p , w p t ’ c a ter I am n e t to Pr fess r n L r z ll h p , i d b ed o o Gi o o i a s Sp e ie e ’ al e ra sc e u nd n f g b i h tra sscend ente ebene K u rven . O th e re ma n n ex am les in th s vol ume a l ar e n u m er are c omm on i i g p i , g b t o all En l sh text- oo s on th e su ect some a re or nal an d g i b k bj , igi th e oth ers are taken from th e Tripos Examinations of recent years in th e case of th e more importan t ex amples b elonging to th e last c e r h in at o t e sou rc es are c te th e tex t . g y , i d T m o fr en a nd former u l Mr . La shm Nara an y i d p pi , k i y , M. A. Pro fessor of Mathemat c s at th e C entral Hin u Colle e , i d g , P REFA CE vii r I am mu ch in e te for some valu a le su estions Bena es, d b d b gg ance in re sin h e ro f e m l and for assist vi g t p o Sh ets. I a a so i . m fr n Dr. Ba B A n o e . c . a ta . LL . indebted t y i d S C g h , (C b D . u l n Pr nc al of th e Unvers t Law olle e of alcutta (D b i ) , i ip i i y C g C , d u n r l t n hose crit c sms an s est o s e a to ha ters V . w i i gg i , i g C p , r ll n n h u fuln III . and XL h ave mate a e h a ce t e se ess of th e V , , i y d r sen l m p e t vo u e . G. PRASAD . B en a/res J u l 1909 . , y C O N T E N T S . — N. B. Th e r ns marke an a er sk ma be m e in a fir rea n [ po tio d with st i y o itt d st di g .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    178 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us