Optimization: Applications, Algorithms, and Computation 24 Lectures on Nonlinear Optimization and Beyond Sven Leyffer (with help from Pietro Belotti, Christian Kirches, Jeff Linderoth, Jim Luedtke, and Ashutosh Mahajan) August 30, 2016 To my wife Gwen my parents Inge and Werner; and my teacher and mentor Roger. This manuscript has been created by the UChicago Argonne, LLC, Operator of Argonne National Laboratory (“Argonne”) under Contract No. DE-AC02-06CH11357 with the U.S. Department of Energy. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. This work was supported by the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy, under Contract DE-AC02-06CH11357. ii Contents I Introduction, Applications, and Modeling1 1 Introduction to Optimization3 1.1 Objective Function and Constraints...............................3 1.2 Classification of Optimization Problems............................4 1.2.1 Classification by Constraint Type...........................4 1.2.2 Classification by Variable Type............................5 1.2.3 Classification by Functional Forms..........................6 1.3 A First Optimization Example.................................6 1.4 Course Outline.........................................7 1.5 Exercises............................................7 2 Applications of Optimization9 2.1 Power-System Engineering: Electrical Transmission Planning................9 2.1.1 Transmission Planning Formulation.......................... 10 2.2 Other Power Systems Applications............................... 11 2.2.1 The Power-Flow Equations and Network Expansion................. 11 2.2.2 Blackout Prevention in National Power Grid...................... 12 2.2.3 Optimal Unit Commitment for Power-Grid...................... 13 2.3 A Control Application: Optimal Transition to Clean Energy.................. 14 2.3.1 Model Description and Background.......................... 15 2.3.2 Other Control Applications............................... 17 2.4 Design of Complex Systems.................................. 17 2.5 Exercises............................................ 18 II Unconstrained and Bound-Constrained Optimization 19 3 Methods for Unconstrained Optimization 21 3.1 Optimality Conditions for Unconstrained Optimization.................... 21 3.1.1 Lines and Restrictions along Lines........................... 22 3.1.2 Local and Global Minimizers............................. 23 3.2 Iterative Methods for Unconstrained Optimization....................... 24 3.2.1 General Structure of Line-Search Methods for Unconstrained Optimization..... 24 3.2.2 Steepest Descend and Armijo Line Search....................... 25 3.3 Exercises............................................ 26 iii iv CONTENTS 4 Newton and Quasi-Newton Methods 27 4.1 Quadratic Models and Newton’s Method............................ 27 4.1.1 Modifying the Hessian to Ensure Descend....................... 30 4.2 Quasi-Newton Methods..................................... 31 4.2.1 The Rank-One Quasi-Newton Update.......................... 32 4.2.2 The BFGS Quasi-Newton Update............................ 33 4.2.3 Limited-Memory Quasi-Newton Methods....................... 33 4.3 Exercises............................................ 35 5 Conjugate Gradient Methods 37 5.1 Conjugate Direction Methods.................................. 37 5.2 Classical Conjugate Gradient Method............................. 39 5.3 The Barzilai-Borwein Method................................. 42 5.4 Exercises............................................ 42 6 Global Convergence Techniques 43 6.1 Line-Search Methods...................................... 43 6.2 Trust-Region Methods..................................... 44 6.2.1 The Cauchy Point.................................... 46 6.2.2 Outline of Convergence Proof of Trust-Region Methods............... 47 6.2.3 Solving the Trust-Region Subproblem......................... 48 6.2.4 Solving Large-Scale Trust-Region Subproblems.................... 48 6.3 Exercises............................................ 49 7 Methods for Bound Constraints 51 7.1 Optimality Conditions for Bound-Constrained Optimization................. 51 7.2 Bound-Constrained Quadratic Optimization.......................... 52 7.2.1 Projected-Gradient Step................................ 52 7.2.2 Subspace Optimization................................. 55 7.2.3 Overall Algorithm for Bound-Constrained Quadratic Optimization.......... 55 7.3 Bound-Constrained Nonlinear Optimization.......................... 56 7.4 Exercises............................................ 56 III General Constrained Optimization 57 8 Optimality Conditions 59 8.1 Preliminaries: Definitions and Notation............................ 59 8.2 First-Order Conditions..................................... 61 8.2.1 Equality Constrained Nonlinear Programs....................... 61 8.2.2 Inequality Constrained Nonlinear Programs...................... 63 8.2.3 The Karush-Kuhn-Tucker Conditions......................... 64 8.3 Second-Order Conditions.................................... 65 8.3.1 Second-Order Conditions for Equality Constraints.................. 65 8.3.2 Second-Order Conditions for Inequality Constraints................. 65 8.4 Exercises............................................ 66 CONTENTS v 9 Linear and Quadratic Programming 67 9.1 Active-Set Method for Linear Programming.......................... 67 9.1.1 Obtaining an Initial Feasible Point for LPs...................... 69 9.2 Active-Set Method for Quadratic Programming........................ 70 9.2.1 Equality-Constrained QPs............................... 70 9.2.2 General Quadratic Programs.............................. 71 9.3 Exercises............................................ 73 10 Nonlinear Programming Methods 75 10.1 Introduction........................................... 75 10.2 Convergence Test and Termination Conditions......................... 76 10.2.1 Infeasible Stationary Points............................... 76 10.3 Approximate Subproblem: Improving a Solution Estimate.................. 77 10.3.1 Sequential Quadratic Programming for Equality Constraints............. 77 10.3.2 Sequential Linear and Quadratic Programming.................... 78 10.3.3 Interior-Point Methods................................. 80 10.4 Globalization Strategy: Convergence from Remote Starting Points.............. 82 10.4.1 Penalty and Merit Function Methods.......................... 82 10.4.2 Filter and Funnel Methods............................... 83 10.4.3 Maratos Effect and Loss of Fast Convergence..................... 84 10.5 Globalization Mechanisms................................... 84 10.5.1 Line-Search Methods.................................. 84 10.5.2 Trust-Region Methods................................. 85 10.6 Nonlinear Optimization Software: Summary.......................... 86 10.7 Exercises............................................ 86 11 Augmented Lagrangian Methods 89 11.1 Augmented Lagrangian Methods................................ 89 11.1.1 Linearly Constrained Lagrangian Methods....................... 89 11.1.2 Bound-Constrained Lagrangian (BCL) Methods.................... 90 11.1.3 Theory of Augmented Lagrangian Methods....................... 90 11.2 Towards Parallel Active-Set Methods for Quadratic Programming.............. 91 11.2.1 Outline of the Algorithm................................ 92 11.2.2 An Augmented Lagrangian Filter........................... 93 11.2.3 Active-Set Prediction and Second-Order Steps.................... 94 11.2.4 Estimating the Penalty Parameter........................... 95 11.2.5 Minimizing the Augmented Lagrangian Subproblem................. 97 11.2.6 Detailed Algorithm Statement............................. 98 11.3 Exercises............................................ 99 12 Mathematical Programs with Equilibrium Constraints 101 12.1 Introduction and Applications................................. 101 12.2 Optimality Conditions and Regularization........................... 103 12.3 Convergence of Nonlinear Optimization Methods....................... 105 12.3.1 Convergence of SQP Methods............................. 106 12.3.2 Convergence of Interior-Point Methods........................ 107 12.4 A Globally Convergent Methods: A Sequential LPEC-EQP Approach............ 110 12.5 Exercises............................................ 111 vi CONTENTS IV Mixed-Integer Nonlinear Optimization 113 13 Introduction and Modeling with Integer Variables 115 13.1 Mixed-Integer Nonlinear Programming Introduction...................... 115 13.1.1 MINLP Notation and Basic Definitions........................ 116 13.1.2 Preview of Key Building Blocks of MINLP Algorithms................ 117 13.1.3 Scope and Outline................................... 121 13.2 Nonlinear Models with Integer Variables............................ 122 13.2.1 Modeling Practices for MINLP............................ 122 13.2.2 Design of Multiproduct Batch Plants.......................... 124 13.2.3 Design of Water Distribution Networks........................ 125 13.2.4 A Dynamic Subway Operation Problem........................ 126 13.2.5 Summary of MINLP Applications........................... 128 14 Branch-and-Bound Methods 131 14.1 Deterministic Methods for Convex MINLP.........................
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages265 Page
-
File Size-