Catalytic Distillation (CD) - Outline

Catalytic Distillation (CD) - Outline

Modern Methods in Heterogeneous Catalysis Research Fritz Haber Institute, Berlin, 14 November 2003 CatalyCatalytictic DistillationDistillation Kai Sundmacher1,2 1 Max-Planck-Institute for Dynamics of Complex Technical Systems Sandtorstraße 1, 39106 Magdeburg, Germany 2 Otto-von-Guericke-University Magdeburg, Process Systems Engineering Universitätsplatz 2, 39106 Magdeburg, Germany [email protected] Catalytic Distillation (CD) - Outline 3 Catalysts for Use in CD Processes 4 Modelling, Simulation, Experimental Validation 2 Fields of Application, CD Lecture Process Examples 5 Operational Process Behaviour 1 Basic Principles of CD CD Expert ! Modern Methods in Heterogeneous Catalysis Research Fritz Haber Institute, Berlin, 14 November 2003 Integration of Unit Operations in Multifunctional Reactors Raw Materials Main Products Recycle Physical Chemical/ Separation Separation Unit Biological Units for Units for Operations Units Reactants By-Products Multifunctional Multifunctional Reactors (e.g. Reactors (e.g. Fuel Cells) Reactive Mill) By-Products Multifunctional Reactors (Reactive Distillation / Absorption / Extraction / Adsorption Column) Possible Benefits from Multifunctional Reactor Concepts Synergetic interactions of chemical and physical unit operations may lead to: á increase of productivity from process intensification á increase of selectivity of reactions and/or separations á reduction of by-products and waste materials á more efficient (in situ) use of energy á inherent safety á improved environmental compatibility (e.g. by avoidance of hazardous solvents etc.). Reactor-Separator System for Isomerization A1 Û A2 Reaction Kinetics: Vapour-Liquid-Equil.: Design Variables: V k æ 1 x ö a x - Damköhler Number Da º R n 2 y = 2 F r = k x1 ç1- ÷ 2 - Number of Stages N K x 1+ (a -1)x2 here è 1 ø D - Product Quality x2 = X Operational Variables: L D, x D 2 - Reflux Ratio R º L / D CSTR A2 - Recycle Ratio j º B / F Distillation F, x F = 1 1 Column Thermodynamic Parameters: VR - equilibrium constant K A 1 VR N - relative volatility a º K2 / K1 A A 1 2 Kinetic Parameters: - reaction order n B - rate constant k Qi, Z., Sundmacher, K. (2000) Chem. Eng. Process, in preparation. Reactor-Separator System for Isomerization A1 Û A2 Design for Reaction Order n = 1 CSTR + Column on Top 25 X = 0.99 min j = 2 R ® ¥ D N L D, x2 K = 2, a = 1.5 = N A j = 5 n = 1 2 20 N Distillation j = 10 j = ¥ Column 15 F CSTR A j = ¥ 1 V Minimum Number of Stages, R 10 0 2 4 6 8 10 Damköhler Number, Da Qi, Z., Sundmacher, K. (2000) Chem. Eng. Process, in preparation Damköhler Number in CD Processes k ×V Da º R Damköhler number F for first order reactions Boiling temperature k = e catcSiteskapp (Tb ) Tb = Tb ( p, x) apparent + rate control catalyst concentration rate via pressure ! holdup of active sites constant temperature on catalyst + T is not a dynamic variable ! Reactive Distillation Column for Isomerization A1 Û A2 Reactive Distillation Column Influence of Reaction / Separation Daopt (N = 20) = 0.2 x 20 = 4 1,0 N = X = 92.5 % 100 50 20 Reactive L D 0,8 10 5 Azeotrope 2 R = L / D 1 X 0,6 Xeq = 66.6 % N Reaction / Separation: (CSTR) Da V k A e c = R µ c cat sites N F N NTSM 0,4 F Conversion, Total 0,2 a = 1.5 K = 2, n = 1 Reboiler R = 10 0,0 0,001 0,01 0,1 1 10 100 Da / N Qi, Z., Sundmacher, K. (2000) Chem. Eng. Process, in preparation. Design of Hybrid CD Column for Isomerization A1 Û A2 Hybrid Column with Influence of Catalyst Distribution Catalytic Stages 1,00 100 20 10 0,95 R = L / D 5 Base L D Case 20 0,90 19 X 2 18 . 0,85 . R = 1 . N = 20 . Ncat . Conversion, 0,80 3 2 a = 1.5 F 1 K = 2, n = 1 0,75 N = 20 Total Da = 4 Reboiler 0,70 2 4 6 8 10 12 14 16 18 20 Number of Catalytic Stages, Ncat Qi, Z., Sundmacher, K. (2000) Chem. Eng. Process, in preparation. Reactive Batch Distillation: MeOH + IA Û TAME Vapour phase: Vapour Flow V Composition yi Heating policy: V / V0 = H / H0 FCR MeOHV IAV TAMEV H+ Liquid phase: MeOHL + IAL TAMEL LCR Holdup H Composition xi Qreb Catalyst: Acidic Ion Exchange Resin (Vcat, cH+) Thiel, C.; Sundmacher, K.; Hoffmann, U. (1997) Chem. Eng. Sci. 52, 993-1005. Reactive Batch Distillation: Model Equations Mass Balances d xi * = ( xi - yi (x,T)) + Da ×(n i - xi n) × r (x,T) dt 1442443 14243 123 Separation by Influence of Reaction Distillation Stoichiometry Kinetics Damköhler Number Boiling Temperature k (T )×c ×V Da º + ref sites cat T = T(x, p) V& o Thiel, C.; Sundmacher, K.; Hoffmann, U. (1997) Chem. Eng. Sci. 52, 993-1005. Catalytic Batch Distillation for TAME-Synthesis: No Reaction (Da = 0) MeOH 2 stable nodes 1 unstable node (azeotrope) 1 saddle point (azeotrope) 1 separatrix MeOH of p = 10 bar Fraction Mole TAME IA Mole Fraction IA Thiel, C.; Sundmacher, K.; Hoffmann, U. (1997) Chem. Eng. Sci. 52, 993-1005. Catalytic Batch Distillation for TAME-Synthesis: Slow Reaction (Da = 10-4) MeOH 3 stable nodes 0 unstable nodes 2 saddle points 2 separaticds chemical equilibrium line MeOH of p = 10 bar Fraction Molenbruch Methanol Mole IA TAME MolenbruchMole Fraction Isoamylenof IA Thiel, C.; Sundmacher, K.; Hoffmann, U. (1997) Chem. Eng. Sci. 52, 993-1005. Catalytic Batch Distillation for TAME-Synthesis: Fast Reaction (Da = 10-3) MeOH 2 stable nodes 0 unstable nodes 1 saddle point 1 separatrix MeOH chemical equilibrium line of p = 10 bar Fraction Mole TAME IA Mole Fraction of IA Thiel, C.; Sundmacher, K.; Hoffmann, U. (1997) Chem. Eng. Sci. 52, 993-1005. Catalytic Batch Distillation for TAME-Synthesis: Reaction in Equilibrium (Da > 1) MeOH 2 stabile nodes 0 unstable nodes 1 saddle point 1 separatix MeOH of chemical equilibrium line p = 10 bar Fraction Molenbruch Methanol Mole TAME IA MoleMolenbruch Fraction Isoamylenof IA Thiel, C.; Sundmacher, K.; Hoffmann, U. (1997) Chem. Eng. Sci. 52, 993-1005. Studies of Side Reactions: Influence of Stage Damköhler Number 2 2 Main Rxn 2 B Û A + C xB - xA xC / Keq 0.1 x r* = r* = C Side Rxn 2 C ® 2 D main 2 side 2 (1 + 5 xC ) (1 + 5 xC ) aAC = 10 Keq = 0.25 1,0 aBC = 3 R = 3.8 Selectivity, S aDC = 13 S = 5.3 0,8 Variation A + D 0,6 of Da on stage 9 stages 0,4 B 20 stages Conversion, X Feed at 0,2 stage 20 9 stages 0,0 0,01 0,1 1 N = 38 C Stage Damköhler Number, Da Studies of Side Reactions: Influence of Catalyst Position Main Rxn 2 B Û A + C 2 2 * xB - xA xC / Keq * 0.1 xC Side Rxn 2 C ® 2 D rmain = 2 rside = 2 (1 + 5 xC ) (1 + 5 xC ) aAC = 10 Keq = 0.25 Selectivity, S 1,0 aBC = 3 R = 3.8 aDC = 13 S = 5.3 0,8 Da = 0.8 A + D 0,6 Conversion, X on stage Changing Position of Catalyst 0,4 B 5 stages Feed at 0,2 stage 20 0,0 5 10 15 20 25 30 N = 38 C Position of Catalyst Section Studies of Side Reactions: Influence of Catalyst Position (Da = 0.2, Reactive Stages = 5) A + D A + D * 2 B rmain xB - xA xC / Keq B * ~ 2 rside xC C C D D 0 0 A A 5 5 10 B 10 B 15 15 20 20 Stage Stage 25 25 30 30 C C 35 35 40 40 0,0 0,2 0,4 0,6 0,8 1,0 0,0 0,2 0,4 0,6 0,8 1,0 x x i i Mapping of Reactor-Separator Systems for Esterification: Alcohol + Acid Û Ester + H2O Fast r Rate, Reaction Slow Low Medium High see e.g.: Schoenmakers (1997) Relative Volatility, aH2O/Ester RD System based on Pre- and Side Reactors Ether Production Flow Scheme (Neste Oy) Advantages Pre-Reactors Side-Reactors l easy catalyst replacement l easy control of reactant-ratio l independent of specific catalyst packing l distillation column hydraulics and mass transfer not affected by catalyst structure CxHy l high Da/N-ratio achievable MeOH MeOH see e.g.: Aittamaa, J., Eilos, I., Jakkula, J., Lindqvist, P., US 5 637 777 (1997) Simple Guideline for CD Reactor Selection p Slow reactions: Da << 1 p Fast reactions: Da ³ 1 + reaction kinetics is limiting + mass transfer is limiting + high residence time + low residence time sufficient + hom. catalysis: high liquid holdup + hom. catalysis: low liquid holdup + het. catalysis: high catalyst holdup + het. catalysis: low catalyst holdup p Solution p Solution + tray column (bubble caps) + packed column + packed column with random packing + tray column with low holdup + column with external side reactors increase p Catalytic Distillation (CD) - Outline 3 Catalysts for Use in CD Processes 4 Modelling, Simulation, Experimental Validation 2 Fields of Application, CD Lecture Process Examples 5 Operational Process Behaviour 1 Basic Principles of CD CD Expert ! Modern Methods in Heterogeneous Catalysis Research Fritz Haber Institute, Berlin, 14 November 2003 Motives for Application of Reactive Distillation Motives Examples Overcoming Limitations Methanol + Acetic Acid Û Methyl Acetate + H2O of Chemical Equilibrium Methanol + Isobutene Û Methyl-tert.-butylether (MTBE) Formaldehyde + 2 Methanol Û Methylal + H2O Increase of Chlorohydrins ® Propylene Oxide + H2O ® Proplene Glycol Selectivity 2 Acetone ® Diacetone Alcohol ® Mesityl Oxide + H2O Reaction Problems Isobutane + 1-Butene ® Isooctane + 1-Butene ® C12H24 Use of Heat Propene + Benzene ® Cumene of Reaction Ethylene Oxide + H2O ® Ethylene Glycol Separation of m-Xylene / p-Xylene (Reactive Entrainer: Na-p-Xylene) Closely Boiling Mixtures Cyclohexene / Cyclohexane (Reactive Entrainer: Formic Acid) 1-Butene / Isobutene (Reactive Entrainer: Methanol / Water) Breaking of Methyl Acetate / Water ; Methyl Acetate / Methanol Problems Azeotropes (Entrainer: Acetic Acid) Separation High Purity Hexamethylene Diamine / Water (in Nylon 6,6 process) Separation (Reactive Entrainer: Adipic Acid) See e.g.: Sundmacher, K., Rihko, L., Hoffmann, U., Chem.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    53 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us