Edger: Differential Expression Analysis of Digital Gene

Edger: Differential Expression Analysis of Digital Gene

edgeR: differential expression analysis of digital gene expression data User's Guide Yunshun Chen, Davis McCarthy, Matthew Ritchie, Mark Robinson, Gordon K. Smyth First edition 17 September 2008 Last revised 30 June 2016 Contents 1 Introduction 5 1.1 Scope . 5 1.2 Citation . 6 1.3 How to get help . 7 1.4 Quick start . 8 2 Overview of capabilities 9 2.1 Terminology . 9 2.2 Aligning reads to a genome . 9 2.3 Producing a table of read counts . 9 2.4 Reading the counts from a file . 10 2.5 The DGEList data class . 10 2.6 Filtering . 11 2.7 Normalization . 12 2.7.1 Normalization is only necessary for sample-specific effects . 12 2.7.2 Sequencing depth . 12 2.7.3 RNA composition . 12 2.7.4 GC content . 13 2.7.5 Gene length . 13 2.7.6 Model-based normalization, not transformation . 13 2.7.7 Pseudo-counts . 14 2.8 Negative binomial models . 14 2.8.1 Introduction . 14 2.8.2 Biological coefficient of variation (BCV) . 15 2.8.3 Estimating BCVs . 16 2.8.4 Quasi negative binomial . 17 2.9 Pairwise comparisons between two or more groups (classic) . 17 2.9.1 Estimating dispersions . 17 2.9.2 Testing for DE genes . 18 2.10 More complex experiments (glm functionality) . 19 2.10.1 Generalized linear models . 19 1 2.10.2 Estimating dispersions . 19 2.10.3 Testing for DE genes . 20 2.11 What to do if you have no replicates . 21 2.12 Differential expression above a fold-change threshold . 23 2.13 Gene ontology (GO) and pathway analysis . 24 2.14 Gene set testing . 25 2.15 Clustering, heatmaps etc . 25 2.16 Alternative splicing . 26 2.17 CRISPR-Cas9 and shRNA-seq screen analysis . 26 3 Specific experimental designs 28 3.1 Introduction . 28 3.2 Two or more groups . 28 3.2.1 Introduction . 28 3.2.2 Classic approach . 29 3.2.3 GLM approach . 30 3.2.4 Questions and contrasts . 31 3.2.5 A more traditional glm approach . 32 3.2.6 An ANOVA-like test for any differences . 33 3.3 Experiments with all combinations of multiple factors . 34 3.3.1 Defining each treatment combination as a group . 34 3.3.2 Nested interaction formulas . 36 3.3.3 Treatment effects over all times . 36 3.3.4 Interaction at any time . 37 3.4 Additive models and blocking . 37 3.4.1 Paired samples . 37 3.4.2 Blocking . 38 3.4.3 Batch effects . 40 3.5 Comparisons both between and within subjects . 40 4 Case studies 43 4.1 RNA-Seq of oral carcinomas vs matched normal tissue . 43 4.1.1 Introduction . 43 4.1.2 Reading in the data . 43 4.1.3 Annotation . 44 4.1.4 Filtering and normalization . 45 4.1.5 Data exploration . 46 4.1.6 The design matrix . 46 4.1.7 Estimating the dispersion . 47 4.1.8 Differential expression . 48 4.1.9 Gene ontology analysis . 50 2 4.1.10 Setup . 51 4.2 RNA-Seq of pathogen inoculated arabidopsis with batch effects . 52 4.2.1 Introduction . 52 4.2.2 RNA samples . 52 4.2.3 Loading the data . 52 4.2.4 Filtering and normalization . 53 4.2.5 Data exploration . 53 4.2.6 The design matrix . 54 4.2.7 Estimating the dispersion . 55 4.2.8 Differential expression . 56 4.2.9 Setup . 58 4.3 Profiles of Yoruba HapMap individuals . 59 4.3.1 Background . 59 4.3.2 Loading the data . 59 4.3.3 Filtering and normalization . 61 4.3.4 Estimating the dispersion . 62 4.3.5 Differential expression . 63 4.3.6 Gene set testing . 64 4.3.7 Setup . 66 4.4 RNA-Seq profiles of mouse mammary gland . 67 4.4.1 Introduction . 67 4.4.2 Read alignment and processing . 67 4.4.3 Count loading and annotation . 68 4.4.4 Filtering and normalization . 69 4.4.5 Data exploration . 70 4.4.6 The design matrix . 71 4.4.7 Estimating the dispersion . 72 4.4.8 Differential expression . 74 4.4.9 ANOVA-like testing . 76 4.4.10 Gene ontology analysis . 77 4.4.11 Gene set testing . 79 4.4.12 Setup . 80 4.5 Differential splicing after Pasilla knockdown . 81 4.5.1 Introduction . 81 4.5.2 RNA-Seq samples . 81 4.5.3 Read alignment and processing . 82 4.5.4 Count loading and annotation . 83 4.5.5 Filtering and normalization . 84 4.5.6 Data exploration . 85 4.5.7 The design matrix . 86 4.5.8 Estimating the dispersion . 86 3 4.5.9 Differential expression . 88 4.5.10 Alternative splicing . 88 4.5.11 Setup . 91 4.5.12 Acknowledgements . 91 4.6 CRISPR-Cas9 knockout screen analysis . 91 4.6.1 Introduction . 91 4.6.2 Sequence processing . ..

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    105 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us