Combining Machine Learning with Evolutionary Computation: Recent Results On

Combining Machine Learning with Evolutionary Computation: Recent Results On

CombiningMachineLearningwithEvolutionaryComputation: RecentResultsonLEM GuidoCervone RyszardS.Michalski* KennethK.Kaufman LiviuA.Panait MachineLearningandInferenceLaboratory GeorgeMasonUniversity Fairfax,VA,22030 *AlsowiththeInstituteofComputerScience,PolishAcademyofSciences,Warsaw,Poland Abstract TheLearnableEvolutionModel(LEM),firstpresentedattheFourthInternationalWorkshopon MultistrategyLearning,employsmachinelearingtoguideevolutionarycomputation .Specifically, LEMintegratestwomodesofoperation:MachineLearningmode,whichemploysamachine learningalgorithm,andDarwinianEvolutionmode,whichemploysaconventionalevolutionary algorithm.ThecentralnewideaofLEMisthatinmachinelear ningmode,newindividualsare “geneticallyengineered”byarepeatedprocessofhypothesisformationandinstantiation,rather thancreatedbyrandomoperatorsofmutationand/orrecombination,asinDarwinian -type evolutionaryalgorithms.Ateachstageo fevoluation,hypothesesareinducedbyamachine learningsystemfromexamplesofhighandlowperformanceindividuals.Newindividualsare createdbyinstantiatingthehypothesesindifferentways.Inrecentexperimentsconcernedwith complexfunctionop timizationproblems,LEMhassignif icantlyoutperformedselected evolutionarycomputationa lgorithms,sometimesachievingspeed -upsoftheevolutionaryprocess bytwoormoreordersofmagnitude(intermsofthenumberofgenerations).Inanotherrecent applicationinvolvingaproblemofoptimizingheatexchangers,LEMproduceddesignsequalor superiortobestexpertdesigns.TherecentresultshaveconfirmedearlierfindingsthatLEMisable tosignificantlyspeed-upevolutionaryprocesses(intermsofthenumberofgenerations)forcertain problems.FurtherresearchisneededtodetermineclassesofproblemsforwhichLEMismost advantagious. 1Introduction Theideathatmachinelearningcanbeusedtodirectlyguideevolutionarycomputationwasfirstpresentedat theFourthInternationalWorkshoponMultistrategyLearning(Michalski,1998).Thispresentation describedtheLearnableEvolutionModel(LEM),whichintegratesamachinelearningalgorithmwitha conventionalevolutionaryalgorithm,andrepo rtedinitialresultsfromLEM'sapplicationtoselected functionoptimizationproblems.Presentedresultswereverypromisingbuttentative.Theywereobtained usingLEM1,arudimentaryimplementationoftheproposedmethod,andtheexperimentswereperfor med onlyonafewproblems. 1 Subsequently,amoreadvancedimplementation,LEM2,wasdeveloped,andmanymoreexperimentswere performedwithit(Cervone,1999).Theoriginalmethodologywasalsosubstantiallyextendedandimproved (Michalski,2000).One oftheimportantimprovementsisthedevelopmentoftheadaptiveanchoring discretizationmethod,ANCHOR,forhandlingcontinuousvariables(MichalskiandCervone,2000).This paperpresentsrecentresultsfromtheapplicationofLEM2toarangeoffunctio noptimizationproblems andtoaproblemofdesigningoptimalheatexchangers.Toprovidethereaderwithasufficientbackground information,thenextsectionbrieflyreviewsthecurrentversionoftheLearnableEvolutionModel. 2ABriefOverviewoftheLearnableEvolutionModel TheLearnableEvolutionModel(LEM)representsafundamentallydifferentapproachtoevolutionary processesthanDarwinian -typeevolutionaryalgorithms.InDarwinian -typeevolutionaryalgorithms,new individualsaregeneratedb yprocessesofmutationand/orrecombination.Thesearesemi -blindoperators thattakeintoconsiderationneithertheexperienceofindividualsinagivenpopulation(likeinLamarckian typeofevolution),northepasthistoryofevolution.InLEM,theevo lutionisguidedbyhypothesesderived fromthecurrentand,optionallyalsopastgenerationsofindividuals.Thesehypothesesidentifytheareasof thesearchspace(landscape)thatmostlikelycontaintheglobaloptimum(oroptima).Themachinelearning programisusedinLEMeitherasthesoleengineofevolutionarychange(theuniLEMversion),orin combinationwiththeDarwinian-typeofevolutionprocess(theduoLEMversion). TheduoLEMversionintegratestwomodesofoperation:MachineLearningmode andDarwinianEvolution mode.TheDarwinianEvolutionmodeimplementsaconventionalevolutionaryalgorithm,whichemploys mutationand/orrecombinationoperatorstogeneratenewindividuals.TheMachineLearningmode generatesnewindividualsbyaprocessofhypothesisgenerationandinstantiation.Specifically,ateachstep ofevolution,itselectstwogroupsofindividualsfromthecurrentpopulation:High -performingindividuals (H-group),whichscorehighonthefitnessfunction,andLow -performanceindividuals(L-group),which scorelowonthefitnessfunction.Thesegroupsareselectedfromthecurrentpopulationorfromsome combinationofthecurrrentandpastpopulations.Thesetwogroupsarethensuppliedtoalearningprogram thatgenerateshypot hesesdistinguishingbetweentheH -groupandtheL -group.Newindividualsare generatedbyinstantiatingthehypothesesinvariousways.Thesenewindividualscompetewiththeexisting individualsfortheinclusioninthenewpopulation. IntheduoLEMvers ion,LEMalternatesbetweenthetwomodesofoperation,switchingtoanothermode whenamodeterminationcondition ismet(e.g.,whenthereisaninsufficientimprovementofthefitness functionafteracertainnumberofpopulations).IntheuniLEMversio n,theevolutionprocessisguided solelybythemachinelearningprogram.Whenthemodeterminationconditionismet,a StartOver operationisperformed.Insuchanoperation,systemgeneratesanewpopulationrandomly,oraccordingto certainrules(Michalski,2000). 2 Figure1presentsaflowchartofuniLEMandduoLEMversionofLEM.Foracomprehensivedescriptionof theLEMmethodologyreferto(Michalski,1998,Cervone,1999,Michalski,2000). uniLEMversion duoLEMversion Startover Startover Switchmode SelectHandL groups SelectHandL SelectParents groups Generatenewindividuals viahypothesescreation andinstantiation Generatenewindividuals Generatenewindividuals viahypothesescreation viamutationand/or andinstantiation crossover Evaluateindividuals Evaluateindividuals Generatenewpopulation Generatenewpopulation Adjustparameters Adjustparameters Figure1.AflowchartoftheuniLEMandduoLEMversions. Belowisabriefdescriptionoftheindividualsteps,withanindicationofhowtheyareimplementedinthe LEM2system. StartOver:Thisoperatorgeneratesanewpopulationrandomlyoraccordingtocetainrules.InLEM2,a newpopulationisgeneratedrandomly,withaprovisothatanumberofthebestperformingindividualsfrom thepastpopulationsareaddedtothenewlygeneratedpopulation(elitism). SelectH -groupandL -group:ThisselectioncanbedoneinLEM2usingoneoftw omethods:Fitness - BasedSelection(FBS),orPopulation -BasedSelection(PBS).InFBS,theH -group(L-group)consistsof individualswhosefitnessisabovetheHFT%fromthetopvalue(belowtheLFT%fromthelowestvalue). InPBS,theH -group(L-group)consistsofHPT%highest -fitness(LPT%lowest -fitness)individualsinthe population.Figure2illustratesthesetwoselectionmethodsandtheparametersHFT(highfitness threshold),LFT(lowfitnessthreshold),HPT(highpopulationthreshold),LPT(lowpopulationthreshold). 3 Figure2.Anexampleofthefitnessprofilefunction,andanillustrationof parametersHFT,LFT,HPT,LPTwouldselecttheHandLgroups. Selectparents: TheselectionoftheparentsisrelatedtotheDarwinianmode.Itsele ctsrepresentative individuals(parents)fromthecurrentpopulationthatwillbemutatedand/orrecombined.LEM2 implementstwotypesofmutation:deterministicanduniform.Inthefirsteveryindividualinthepopulation isselected,whileinthelatte r,everyindividualhasthesamechanceofbeingselected,independentlyfrom itsfitness. Generatenewindividualsviahypothesiscreationandinstantiation :TheLEMmethodologyisnot constrainedtoanyparticularlearningalgorithm,butcanbeused,in principle,withanyconceptlearning method.LEM2employsAQ18rulelearningprogramthatishighlysuitableforLEMduetoitsvarious characteristics,suchastheabilitytolearnruleswithdifferentlevelsofgenerality,theuseofinternal disjunctionoperator,andapowerfulknowledgerepresentation. Figures3and4showanexampleoftheinputandoutputfromAQ18,respectively(aftersmallediting). ¡ ¢ ¡ £ ¤ ¥ ¤ ¢ ¦ ¢ § ¨ ¡ £ © ¥ ¢ £ £ ¤ £ ¡ ¦ ¥ ¡ ¢ ¨ ¦ ¤ ¤ £ ¥ ¦ ¤ ¨ ( ) * + , + - + ( . * / 0 / - , 1 2 + 3 4 , ( 5 ) 6 7 ' ¡ ¢ ¡ © ¤ ¦ 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ ¥ ¤ ¦ ¤ ¦ ¥ ¨ ¡ £ ¤ ¨ _ ` a b c d e f g a g h i f j k d b b l b d m n ¨ o p b q d r q a r d n s t s b d k j g m b ¨ ¨ b d f q a r d n s t s b d k j g m b u ¢ § ¤ ¤ ¨ ¥ ¦ ¤ ! ¥ Note:Thevaluesintheconditionsoftherule " " " # $ $ " % " abovearesymbolsrepresentingrangesoforiginal $ " # " " valuesofthesevariables,nottheoriginalvalues. $ $ " # Theserangeshasbeendeteminedin theprocess $ " $ # of adaptiveanchoringquantization (Michalski ¢ § ¤ ¤ ¨ ¥ ¦ & andCervone,2000). ¤ ! ¥ $ $ # " # $ v " " " Figure4.AQ18input. w Figure5.AQ18output. AQ18takesasintputtheH -groupandL -group,aspecificationofthetypesand domainsofthevariables, plus,optionally,controlparameters[see(KaufmanandMichalski,2000)foradetailedexplanation],and producesasetofattributionalruleswithannotationscharacterizingtherules.Eachlearnedruleisa 4 conjunctionofcondi tionsthatspecifyrangesofvaluesanattributemaytake(inthecasewhenAQ18runs withoutinvokingconstructiveinduction).Aruleisinstantiatedbyselectingvaluessatisfyingrule conditions.Thelearnedrulesareusedtogeneratenewindividuals byrandomizingvariableswithinthe rangesofvaluesdefinedbytheruleconditions.Ifaruledoesnotincludesomevariable,itmeansthatthis variablewasfoundirrelevantfordistinguishingbetweentheH -groupandtheL -group.Variablesthatare noti ncludedintheruleareinstantiatedbyrandomlychoosingavaluefromtheirdomain,orchoosinga valuethatispresentinarandomlyselectedindividualfromthecurrentpopulation. Generatenewindividualsviamutationand/orcrossover :Individualsin theparentpopulationaremutated and/orrecombined.ResearchonDarwinian -typeevolutionaryalgorithmshasinvestigatedmanydifferent

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    18 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us