High School Mathematics Glossary Pre-calculus English-Chinese BOARD OF EDUCATION OF THE CITY OF NEW YORK Board of Education of the City of New York Carol A. Gresser President Irene H. ImpeUizzeri Vice President Louis DeSario Sandra E. Lerner Luis O. Reyes Ninfa Segarra-Velez William C. Thompson, ]r. Members Tiffany Raspberry Student Advisory Member Ramon C. Cortines Chancellor Beverly 1. Hall Deputy Chancellor for Instruction 3195 Ie is the: policy of the New York City Board of Education not to discriminate on (he basis of race. color, creed. religion. national origin. age. handicapping condition. marital StatuS • .saual orientation. or sex in itS eduacional programs. activities. and employment policies. AS required by law. Inquiries regarding compiiulce with appropriate laws may be directed to Dr. Frederick..6,.. Hill. Director (Acting), Dircoetcr, Office of Equal Opporrurury. 110 Livingston Screet. Brooklyn. New York 11201: or Director. Office for o ..·ij Rights. Depa.rtmenc of Education. 26 Federal PJaz:t. Room 33- to. New York. 'Ne:w York 10278. HIGH SCHOOL MATHEMATICS GLOSSARY PRE-CALCULUS ENGLISH - ClllNESE ~ 0/ * ~l.tt Jf -taJ ~ 1- -jJ)f {it ~t ~ -ffi 'ff Chinese!Asian Bilingual Education Technical Assistance Center Division of Bilingual Education Board of Education of the City of New York 1995 INTRODUCTION The High School English-Chinese Mathematics Glossary: Pre­ calculus was developed to assist the limited English proficient Chinese high school students in understanding the vocabulary that is included in the New York City High School Pre-calculus curricu lum. To meet the needs of the Chinese students from different regions, both traditional and simplified character versions are included. The bilingual mathematics teachers may also use this glossary as reference material. This is one of a series of English-Chinese glossaries that is being developed by the Chinese/Asian Bilingual Education Technical Assistance Center (CAB ETAC ), Division of Bilingual Education, Board of Education of the City of New York. The project is made possible by a grant from the Office of Bilingual Education, New York State Education Department. The following is a list of the glossary series . The Mathematics and Science glossaries will be available by the end of May, 1995. The Social Studies glossaries will be available by the end of September, 1995. The Mathematics Series: • Integrated Mathematics (Course I) • Integrated Mathematics (Course II) • Integrated Mathematics (Course III) • Pre-calculus • Calculus The Science Series: • High School General Science • J unior High School Science • Chemistry • Physics • Biology The Social Studies Series: • Global History 1 • Global History 2 • Global History 3 • Global History 4 • American Government • American History 1 • American History 2 For information or recommendation, contact CABETAC office, Division of Bilingual Education, c/o Seward Park High School, 350 Grand Street, Room 518, New York, NY 10002, Tel: (212) 677-0493 Fax: (212) 677-0398 . ACKNOWLEDGEMENTS Special acknowledgement is extended to: Wenhua Reyen, Mathematics teacher at Seward Park High School for developing the High School English-Chinese Mathematics Glossary: Pre-calculus; Annie Han, Consultant of Chinese/Asian Bilingual Education Technical Assistance Center (CABETAC) for reviewing; De-Kun Yuan, word processor of CABETAC, for coordinating the typing and printing; Eva Hsien, typist, for typing; and Jennifer Fung, secretary, for designing the cover; Dr. Frank Tang, previous Director and Mr. Peiqing Yang, previous Resource Specialist of CABETAC, for coordination of the Glossary Series; and Dr. Florence Pu-Folkes, Director of CABETAC, and Wendy Yang, Coordinator/Resource Specialist for supervising the completion of the Glossary Series. Special appreciation is extended to Dr. Lillian Hernandez, Executive Director of the Division of Bilingual Education, Board of Education of the City of New York, and Carmen Perez Hogan, Coordinator of the Office of Bilingual Education, New York State Education Department. Without their support, this project would never have been possible. CONTENTS Introduction ....... ........... ........ ....................... i Acknowledgements . .......... ... ... .............. ............. ii Traditional Character Version . .. ............ .. .............. ... 1 Simplified Character Version .............. ..................... 30 TRADITIONAL CHARACTERS A abridge division t1!'~~ ambiguous sign jtJli'lCi:;:!I!5tt abridged multiplication t1!'*~ amplitude of a periodic function l!J\ljiii§t\:lJR~ abridged notation ~1iC~ amplitude of function iii§~lJR~ abridged proof t1!'Hi!~ analogue ~ltl! adjacent vertices ;ffl~rn:~ analogue calculator ~ltl!ift:l't~ adjoining figure 1*,Mlil% analogue multiplier ~!J:ij<*~ adjoining rectangles 1*,MlJi!!% angle of inclination ~fff adjoining Venn diagram 1*'llil'l:JcJ3i;11ill angle of incidence AMfff adjoint determinant 1*,Mltr~tl;t angle of parallelism 'J!-trfff adjusted proportionally ilml~!t{fu angle of reflection liMfff admissible error ~iit~ anharmonic ratio 3I:!t; IF ar.J;;:U!t;:!I!!t advance estimate ¥1ltr#tiff-tli: anticommutative property li3l:i9'<i1'i( algebraic cone ~t\:~; 1tt\:~1lii antilogarithm R~t\: algebraic spiral 1tt\:~~ approximate convergence J.II{W&i!!: algebraically complete 1tll:'MllIl approximate expansion J.II{~J&Illl;t alternate determinant 3I:~1T~tl;t approximate the norm JI[{~~t\:, J.II{W;!,I.1* alternating positive and negative arbitrary parameter 1ftt~l\: arbitrary sequence 1ftt~tl alternative formula ~-0;t arithmetic progression JHfjli/k~ alternative symbolism ~-W'lCi: arithmetic series :jll:j;fjli/kl!: ambiguous data m~J':ti4 arithmetical series :jll:j;fjli/kj;fj, ~~~&l!: -1 - array ~7iJ; llc*ll. asymptotically equal jtllfrttl"ll asserti Dn J!TiE asymptotically equivalent ltlilfr"lliJ associative axiom t$15-0J.m augmented matrix ~~J;e~ astrDid liU[;i~ automorphic i3li'iJt/li!i9 ; i3;t-!i9 asymmetrical step functiDn ~f:;Hjl}~I1':t1\pj§~ automorphic function i3 ;t-pj§~ asymptDtic It\lfra~ automorphism i3liiHIli asymptDtic apprDximation ltlilfr:i!lfrl'ti: auxiliary circle i\!iIi[l!!J)1!il asymptotic characteristic ltlilfrtif'11 axiom of comparison ttilR0l111 asymptotic circle ltllfrllil axiomatic 0l111S9 asymptotic series ltlilfr~llc axioms of order ~Jf.0ll1! - 2- B base vectors il\!i[!;]:!i bound for the magnitude lttMIi9f!!.JI!! basis vector il\!i;$:[!;]:Il: boundary f!!.; iif!!.; ii~ binomial distribution =l:'Ii::51-~ boundary complex iif!!.fj[JB binomial theorem =l:'Ii:JtJEJlll. boundary line f!l.tilIi biorthogonal 1!J!iE:9: boundary maxima and minima bisecant =~jIf~~ ii~;fil!*f!l;fil!/J' block of digits -fi§.1ll:'¥ boundary of half- plane ¥-'¥'iliili9f!1.~~ Boolean algebra ;tp1>liff"t1ll: bounded 1if!l.1i9 Boolean expression ;tp1>lif*JiJt bounded above J:1if!!.1i9 Boolean factor .:(P1>lifE§.y bounded below T1i f!!.1i9 bound f!!.; iif!!.; M1* Briggsian logarithm 1jt fflltt1ll: -3- c cardioid ,L.'J!!£Ml comparison function tt~PEil\: center of curvature ilIl$.tjo,L.' complement of set 1m~ characteristic cone ~~Jit, ~~~1lii completeness jt~¥:t characteristic constant ~~'litl\: completeness of axiom systems characteristic curve ~~[ ilIl J~ 0l1BU1i:!B jt~¥:t characteristic determinant t¥~rrllJA components of a vector ioJ:lll:!B?t:!li; characteristic equation ~~;ff;l composite determinant ifJiX;rrjlJ;o'\ characteristic function ~~PEil\: composite matrix if JiX;[9:E: J'" characteristic root ~~m composition of probabilities i!t$if $'; characteristic vector ~ioJ:!i composition of vectors ioJ:lll:!BirJiX; circle of curvature ilIl$1liIJ coefficient of correlation ;fI'HIIl~l\: closed half-plane M~"¥'1lii coincidence 1fif,1ll:ir closed interval Mm;:r., coincidence number 1fifl\: coefficient matrix ~~'" coincident lines 1ll:if1l:~~ cofunction ~PEi l\: column matrix jIJ9:E:'" cologarithm I*~l\: concave downward l'!]ioJTIl9 col umn vector jlJ [ti):lll: concave upward l'!]ioJ..t!B common differcnce 0~ conchoid J:f~ common divisor 0;o/-Jl\: conditional convergence {!$#M common or Briggsian logarithms 'litJll~l\: conditionally convergent {!$#M commom ratio 0tt conditional probability iHH~$ -4- conic ::.iJ;:i!!l!£il9; ~ii(til9 consistency of linear equation conic projection ::.iJ;:i!!l~:iQ:~j ~i't:nf!€ B9.jtj?§ i't conic section ~~fti!!l!£; ::.iJ;: i!!l~ consistent *~?§il9; -3&B9 ; ~*Jfil9 conic with center 1H.'::.iJ;:i!!l~ constant polynomial 1il"~$Jf! 'i'.\: conic without center 1!IH,'::.iJ;:i!!l~ continuity iI!L;jf'l1: conical point ~rn:~ continuous function :i!UftiiEi~ conical function ~ii(tfEJ~ convergence 4k~ conicoid ::.iJ;:i!!lllil convergent ~B9 conjugate angle ~iWii:ffl convergent geometric series t!ldli:j~{iiJil&~ conjugate arc ~iWii3JR convergent sequence t!kMJ~ conjugate axis ~iWii*iIi conversion equations vlJJff<:1ff!€ conjugate conics ilic;@1 ::.iJ;: i!!l!ilb ~iWii::.iJ;:i!!l~ convex domain 6f,:;Jt conjugate curves ~iWiii!!l~ convex region 61!llf,:;Jt conjugate hyperbolas ~~~i!!l~ convexity ~i1 conjugate hyperboloids ~iWii.®!'i!!lllil coplanar vector ~llilJoJ :lIi: conjugate imaginary ~iI!iiliffimi coprime ::S:~mi conjugate lines ~iiIi:K~ core tt".' con.iugate lines in a conie counterexample 5. 1f~ critical point 1l.'I;ffi.~ conjugate matrice ~iWii[i'ie JF,;;: cross line iE3C~ conjugate of function fEJ ~il9~iWii crystallographic group j;S.'Ulllf conjugate pail's ;l\<iWiimi1t crystallogr aphic axes j;S,f'allUib conjugate points ~iWii!\\ cubic curve ':::iJ;:i!!l~ conjugate radicals ;ftWli:itiLj!-:< mil cubic equation ':::IX:1f flil cubic polynomial .:::iJ;:$Jf!'i'.\:
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages36 Page
-
File Size-