Lecture 33 Antenna Arrays and Phase Arrays Two Hertzian Dipoles – A

Lecture 33 Antenna Arrays and Phase Arrays Two Hertzian Dipoles – A

Lecture 33 Antenna Arrays and Phase Arrays In this lecture you will learn: • Antenna arrays • Gain and radiation pattern for antenna arrays • Antenna beam steering with phase array antennas ECE 303 – Fall 2007 – Farhan Rana – Cornell University Two Hertzian Dipoles – A Two Element Array z Consider first an array of just two Hertzian dipoles: r r J1 r r 3 r r J0 r r J0()r = zˆ I0 d δ ()r − h0 h0 h1 r r 3 r r J1()r = zˆ I1 d δ ()r − h1 y x Each antenna in the array is an “element” of the array One can write the E-field in the far-field as a superposition of the E-fields produced by all the elements in the array: r j η kd r r E ()rr = θˆ o sin()θ e− j k r I e j k rˆ.h0 + I e j k rˆ.h1 ff 4π r [ 0 1 ] j η k I d ⎡ I r I r ⎤ ˆ o 0 − j k r 0 j k rˆ.h0 1 j k rˆ.h1 = θ sin()θ e ⎢ e + e ⎥ 4π r ⎣ I0 I0 ⎦ Element Factor Array Factor r = Ε()()r ,θ ,φ F θ ,φ • The “element factor” is just the E-field produced by the first element if it were sitting at the origin • The “array factor” captures all the interference effects ECE 303 – Fall 2007 – Farhan Rana – Cornell University 1 An N-Element Antenna Array - I Consider an N-element antenna array where the elements are: - all identical (all loops, or all Hertzian dipoles, or all Half-wave dipoles, etc) - all oriented in the same way - but with possibly different current phasors Let the current phasor of the m-th antenna be Im r Let the position vector of the m-th antenna be hm One can write the E-field in the far-field as a superposition of the E-fields produced by all the elements in the array: z IN−1 r h N−1 r m r r r Im j k rˆ.hm Eff ()r = Ε()r,θ ,φ ∑ e m=0 I0 Im r = Ε()()r,θ ,φ F θ ,φ y I1 z I0 x ECE 303 – Fall 2007 – Farhan Rana – Cornell University An N-Element Antenna Array - II N−1 r r r r r Im j k rˆ.hm Eff ()r = Ε ()r ∑ e m=0 I0 r = Ε()()r ,θ ,φ F θ ,φ r r S()r ,t .rˆ r 2 2 Gain: G()θ ,φ = ∝ ⎡angular part of Ε()r,θ ,φ ⎤ F()θ ,φ P 4π r 2 ⎣⎢ ⎦⎥ G()θ ,φ Pattern: p()θ ,φ = z IN−1 G()θ ,φ max r hm Im y I1 z I0 x ECE 303 – Fall 2007 – Farhan Rana – Cornell University 2 An N-Element Hertzian Dipole Phase Array z N-element Hertzian dipole array a • Current magnitude is the same for all the dipoles jα 1 • Current phase difference between j2α e e y successive dipoles is α j (N −1)α e I x m+1 = e j α I Element Factor: m r j η k I d Ε()r ,θ ,φ = θˆ o 0 sin()θ e− j k r 4π r Array Factor: N−1 r r N−1 I j k rˆ.h j k rˆ.h jα m j k a m sin()θ cos ()φ F()θ ,φ = ∑ m e m = e 0 ∑ e e m=0 I0 m=0 ⎡N ⎤ sin2 α + ka sin θ cos φ N−1 2 ⎢ ()() ()⎥ 2 j k a sin()θ cos ()φ +α m ⎣ 2 ⎦ ⇒ F()θ ,φ = ∑ ()e = ⎡1 ⎤ m=0 sin2 ()α + ka sin()θ cos ()φ ⎣⎢2 ⎦⎥ ECE 303 – Fall 2007 – Farhan Rana – Cornell University An N-Element Hertzian Dipole Phase Array z N-element Hertzian dipole phase array antenna a ηo 2 P = k I0 d N jα 1 12π j2α e e y r S rr,t .rˆ j (N −1)α ( ) 3 2 2 x e G()θ ,φ = = sin ()θ F (θ ,φ ) P 4π r 2 2 N Coming from the array factor element factor Pattern: 1 p()θ ,φ = sin2 ()θ F (θ ,φ )2 N2 ⎡N ⎤ sin2 ()α + ka sin()θ cos ()φ 1 ⎢ 2 ⎥ p()θ ,φ = sin2()θ ⎣ ⎦ 2 ⎡1 ⎤ N sin2 ()α + ka sin()θ cos ()φ ⎣⎢2 ⎦⎥ Coming from the array factor element factor ECE 303 – Fall 2007 – Farhan Rana – Cornell University 3 An N-Element Hertzian Dipole Phase Array: Maxima y Lets look at radiation in the x-y plane: a cos()φ Radiation going in the φ direction from adjacent elements will add in-phase, and one will have a big maximum in the radiation pattern, provided: φ k a cos φ + α = ±2π n x ( ) a { n = 0,1,2,3,KK 2 p()θ = π 2,φ F(θ = π 2,φ ) big maxima N = 20 (main lobes) N = 20 main side π small lobes α = − π lobes φ 4 maxima α = − (side lobes) 4 π nulls ka = π 2 ka = 2 φ (degrees) ECE 303 – Fall 2007 – Farhan Rana – Cornell University An N-Element Hertzian Dipole Phase Array: Maxima y Condition for a big maximum in the x-y a cos()φ plane: k a cos(φ ) + α = ±2π n { n = 0,1,2,3, φ KK At a big maximum the value of the array x a factor is: 2 ⎡N ⎤ 2 sin ()α + ka cos()φ F()θ = π 2,φ 2 ⎣⎢ 2 ⎦⎥ F()θ = π 2,φ max = 2 ⎡1 ⎤ big sin ⎢ ()α + ka cos()φ ⎥ maxima ⎣2 ⎦ (main lobes) N = 20 = N2 π small α = − 4 maxima And the value of the antenna gain is: (side lobes) π nulls ka = 3 2 G()θ ,φ = sin2()θ F (θ ,φ )2 2 N ⎛ π ⎞ 3 ⇒ G⎜θ = ,φ ⎟ = N φ (degrees) ⎝ 2 ⎠max 2 ECE 303 – Fall 2007 – Farhan Rana – Cornell University 4 An N-Element Hertzian Dipole Phase Array: Nulls y Radiation in the x-y plane: a cos()φ The array factor will give a null in the radiation pattern provided: 2π n φ k a cos()φ + α = ± N x { n ≠ 0,N,2N,3N, a KK F(θ = π 2,φ )2 big 2 ⎡N ⎤ maxima sin ()α + ka cos()φ (main lobes) 2 ⎣⎢ 2 ⎦⎥ N = 20 F()θ = π 2,φ = π small 1 α = − 2 ⎡ ⎤ 4 maxima sin ()α + ka cos()φ (side lobes) ⎢ ⎥ π nulls ⎣2 ⎦ ka = 2 φ (degrees) ECE 303 – Fall 2007 – Farhan Rana – Cornell University An N-Element Hertzian Dipole Phase Array: Width of Big Maxima y F(θ = π 2,φ )2 N = 20 π φ α = − 4 π x ka = a 2 φ Angular width of a lobe associated with a big maxima: ∆φ nN For a big maxima: k a cos()φ + α = 2π n = 2π { n = 0,±1,±2,±3, N KK At the nulls nearest to the above maxima we must have: ⎛ ∆φ ⎞ nN ± 1 k a cos⎜φ + ⎟ + α = 2π ⎝ 2 ⎠ N Which can be solved for ∆φ – and for N large (N >> 1) 4π 1 ∆φ ≈ one gets approximately: N ka sin()φ ECE 303 – Fall 2007 – Farhan Rana – Cornell University 5 An N-Element Hertzian Dipole Phase Array: Examples z N-element Hertzian dipole array a ka = π Phase difference between successive elements is α jα 1 j2α e y e j (N −1)α p()θ ,φ x e p()θ ,φ N = 2 N = 10 ECE 303 – Fall 2007 – Farhan Rana – Cornell University An N-Element Hertzian Dipole Phase Array: Examples z N-element Hertzian dipole array a ka = π / 2 Phase difference between successive elements is α jα 1 j2α e y e j (N −1)α p()θ ,φ x e p()θ ,φ N = 2 N = 10 ECE 303 – Fall 2007 – Farhan Rana – Cornell University 6 An (N+1)-Element Hertzian Dipole Binomial Array λ z (N+1)-element Hertzian dipole array a = 2 a • Current phase is the same for all the ⇒ ka = π dipoles • Currents magnitudes in the dipoles y follow a binomial distribution I N! x m = I0 m! ()N − m ! Element Factor: r j η k I d Ε()r ,θ ,φ = θˆ o 0 sin()θ e− j k r 4π r Array Factor: N r r N I j k rˆ.h j k rˆ.h N! j k a m sin()θ cos ()φ F()θ ,φ = ∑ m e m = e 0 ∑ e m=0 I0 m=0 m! ()N − m ! 2 2N ⎡k ⎤ ⇒ F()θ ,φ = 1+ e j k a sin()θ cos ()φ = 22N cos2N a sin()θ cos ()φ ⎣⎢2 ⎦⎥ ECE 303 – Fall 2007 – Farhan Rana – Cornell University An (N+1)-Element Hertzian Dipole Binomial Array: Maxima and Nulls y Lets look at radiation in the x-y plane: a cos()φ Radiation going in the φ direction from adjacent elements will add in-phase, φ and one will have a big maximum in the radiation pattern, provided: x a k a cos(φ ) = ±2π n 2 2N 2N ⎡π ⎤ { n = 0,1,2,3, F()θ = π 2,φ = 2 cos ⎢ cos()φ ⎥ KK ⎣ 2 ⎦ π ⎡π ⎤ ⇒ cos()φ = ±π n p()θ = π 2,φ = cos2N cos()φ 2 ⎣⎢ 2 ⎦⎥ p()θ = π 2,φ p(θ = π 2,φ ) N+1=40 Note: N+1=40 N+1=2 φ (degrees) N+1=2 • No side lobes • Two nulls at φ = 0,π φ (degrees) ECE 303 – Fall 2007 – Farhan Rana – Cornell University 7 Applications of Antenna Arrays - I Phased Array TRack to Intercept Of Target Alaska ECE 303 – Fall 2007 – Farhan Rana – Cornell University Applications of Antenna Arrays - II Communication satellite with two phase array MRI system with phase array antenna panels RF receivers Jicamarca facility (Peru) with an array of half-wave dipoles SETI ECE 303 – Fall 2007 – Farhan Rana – Cornell University 8.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    8 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us