Refining MHV Diagrams

Refining MHV Diagrams

Refining MHV Diagrams by Andreas Brandhuber Queen Mary, University of London Munich, June 19, 2007 hep-th/0612007 AB-Spence-Travaglini arxiv:0704.0245 [hep-th] AB-Spence-Travaglini-Zoubos Outline • Motivation • MHV Diagrams • Tree MHV Diagrams (Cachazo-Svrcek-Witten) • Loop MHV Diagrams (AB-Spence-Travaglini) • One-loop Amplitudes in Pure Yang-Mills from MHV diagram • The all-minus helicity amplitudes • MHV diagrams from LC Lagrangian (Gorsky-Rosly, Mansfield, Morris-Ettle) • Completion of MHV diagram method • all-plus helicity amplitude from Lorentz violating counterterm • non-canonical, “holomophic” field transformation • Conclusions Goal • The goal of this talk is to address two questions: I. Do MHV Diagrams (a la CSW) provide a new, complete, perturbative expansion of Yang-Mills? II. And if not can we find a suitable completion of the MHV diagram method? Motivations • Simplicity of scattering amplitudes unexplained by textbook Feynman methods: e.g. Park-Taylor formula for MHV tree amplitude <--+++...+> • New ideas from twistor string theory (initiated by Witten 2003) help to “explain” this simplicity • Novel, practical tools to calculate physically relevant amplitudes ➡ LHC is coming • New reorganisations of conventional perturbation theory Spinor helicity Amplitudes formalism ColourSpinor decomposition helicity formalism • Main idea:A =disentangleA( λi, colourλi,;hi ) Scattering p µ null vector Amplitudes { } • At tree lep µ v el n, Yullang-Mills vector interactions are planar •Color Ordering:• µ µ DefineColour p a-or a ˙ = der p µ edσ a a ˙par whertial amplitudesµe σ = ( 1 , !σ µ ) • • Define p a a ˙ = p µ σ a a ˙ where σ = ( 1 , !σ ) tree • aσ aσn! A (2 pi,εi ) = ∑Tr(T 1 T ) A(σ(p1,ε1),...,σ(pn,εn)) If p { = 0 } thenσ 2 d··e·t p = 0 • ! momenta• If and p polarisation = 0 then v ectors Colourd eexprt-orpderessed=ed 0par intial termsamplitude of spinors and helicities ˜ ˜ ˜ ˜ HenceSpinor Helicity: p aa˙Hence= λaλ a˙p aa˙ = λ·aλ(a˙λ) positiv· eλ (negativ(λ) positive) helicitye (negativ e) helicity Next• example:- Include• only diagrams with fixed cyclicspinors orderingspinors of gluons ˙ ! colour indices stripped off a12b := ε λaλb [12a˙] :=b˙ ˜ a˙˜ b - Inner Maximall Analproductsytic- Inner ystructur H elicity pr 12e oducts is : simpler= V ε iolatingab λ λ , amplitude ab [12 1 ] 2 : =, ε ˙λ˜, λ˜ εa˙b˙λ1λ2 - ! " !1 2" a˙b 1 2 or MHV amplitude2(p p ) = 12 [12] 2(p p ) += +121 · [122 +] ! " MHVFirst Tree examples: Amplitudes: 1 ·A2(1 ,2! ,..".n ) = 0 , •(ParkAte-Ta ylor)loop level: multi-trace contributionsat tree level ! helicities• are a permutation of !!+++....++ Simple & A(1−,2 ,...n ) = 0 - subleading in 1/N Holomorphic! 4 + + i j A (1 ...i− ... j− ...n ) = " # Parke-Taylor formula MHV 12 23 n1 " #" #···" # ! ! Amplitudes in Twistor Space • Witten (2003): Simplicity can be “explained” • MHV Amplitudes holomorphic ऄline in twistor space • moreover: L-loop amplitudes with Q negative helicity gluons localise in twistor space on curves of degree=Q-1+L and genus<=L Q=4 Q=3 MHV Diagrams • MHV amplitude (holomorphic) = line in twistor space = pointlike interaction in Minkowski space (Witten, Cachazo-Svrcek- Witten) • CSW Rules (Cachazo-Svrcek-Witten) • MHV amplitudes promoted to local vertices off-shell continuation L = l + z! , " L !˜ a˙ • µ µ µ a ∼ aa˙ • Connect MHV vertices with scalar propagators • Note: η is related to LC gauge fixing MHV Diagrams cont’d typical MHV diagram contributing to 1 1 an NNMHV amplitude 2 2 L L! • • Covariance (= η-independence) is achieved after summing all MHV diagrams (CSW) • Equivalence with results of Feynman diagram calculations • On-Shell Recursion Relations (Britto-Cachazo-Feng-Witten) • MHV diagrams = special recursion relation (Risager) (shifts invisible since MHV amplitudes are holom.) From Trees to Loops (AB-Spence-Travaglini) • Original prognosis from twistor string theory was negative (Berkovits-Witten), Conformal SUGRA modes spoil duality • Try anyway: • Connect MHV vertices, using the same off-shell continuation as for trees • sum over all MHV diagrams and internal particle species • Find measure, perform loop integration • different from unitarity-based approach dM ! Z m1,m2,h The loop measure 4 4 d L1 d L2 (4) dM = 2 2 " (L2 L1 + PL) L1 + i!L2 + i! − • Use L = l + z η and L (l, z) → d4L dz = d4l"(+)(l2) L2 + i! z × dipersive phase space measure x measure • Loop integral becomes (use dimensional regularisation) (Dispersion integral) x (2-particle LIPS integral) • Sum of all MHV diagrams is covariant • MHV 1-loop amplitudes in N=4/N=1 SYM (agree with Bern- Dixon-Dunbar-Kosower) Evidence for MHV method • Tree Level Amplitudes ऄ complete proof (CSW, Britto-Cachazo- Feng-Witten, Risager) • One-Loop Amplitudes in Supersymmetric Yang-Mills • MHV method at one-loop ऄExplicit calculation of complete MHV one-loop Amplitudes in N=4 SYM (AB-Spence-Travaglini) & N=1 SYM (Bedford-AB-Spence-Travaglini, Quigley-Rozali) • “Proof” at one-loop for generic amplitudes in SYM • Feynman Tree-Theorem ऄ covariance • unitarity cuts • soft & collinear limits Without Supersymmetry • Cut-constructible part of MHV 1-loop amplitudes in pure Yang-Mills from MHV diagrams (Bedford-AB-Spence-Travaglini) • First result for QCD from MHV diagrams • Amplitudes in pure Yang-Mills not 4D cut-constructible • rational terms are missed by MHV diagrams • Look for alternative techniques, like on-shell recursions... (Bern, Dixon, Kosower, Berger, Forde...) • ... or try to refine the MHV diagram method Two related problems •RelatedMissing Pr all-plusoblems amplitude in pure Yang-Mills 1 γ5 i Tr( − lˆ lˆ lˆ lˆ ) 1 loop( +,..., +) = 2 1 2 3 4 An− 1 n − 2 ∑ 48π 1 l <l <l <l n 12 23 n1 ≤ 1 2 3 4≤ # $# $···# $ (Bern-Chalmer-Dixon-Kosower, Mahlon) ! all-plus equivalently computed in Self-Dual Yang-Mills • All-plus helicity one-loop amplitude in pure YM is missing !•vanishesfinite in supersymmetric theories • vanishes in supersymmetric theories • MHV method reproduces cut-constructible par• cant of be amplitudes computed in Self-Dual-Y in pure Yang-Millsang-Mills (Bedford, Brandhuber, Spence, GT) • we claimed that MHV diagrams miss rational terms with one exception... ! rational terms missing...with one exception: The all-minus amplitude (AB, Spence, Travaglini) • Can be drawn with MHV vertices (unlike the all-plus) ➡ MHV diagrams should be able to produce it! • For n-point <--- ....-> amplitude we need n 3-point MHV vertices: • Recall: D=Q-•1Thr+L ee-point scalar-scalar-negative helicity • Crucial: 3-point MHVgluon ver ticesvertex: = LC vertices ➡ result a priori correct (3) η L1 k] v¯ (L1,k,L2) = ! | | φAzφ ηk ! " • MHV three-point vertices are the same as in lightcone Yang-Mills ! expected on the basis of Mansfield’s field redefinition Explicit calculation Explicit Calculation Supersymmetric• Use supersymmetric decomposition decomposition:of 1-loop amplitudes A = (A + 4A + 3A ) 4(A + A ) + A g g f s − f s s • N=4 and N=1 SUSY contributions are zero • N=4 and N=1 contributions vanish • Only need to consider a complex scalar running in the loop • •Gluontechnicall ➡ y simpler scalar running in the loop • Use dimensional regularisation (DR): 3pt MHV vertices 4- -dim’lsimpler (spinor to brackcalculateets) while propagators are D-dim’l 2− 3− 2− MHV diagrams+ for the <----> 2− 3− − 2− + + + 3− 2− − − + − 2− + 33−− 22−− 3− − + + pms − ++ − −− − ++ + − + + pms 3− + ++ − + 3− 4− −− − + − − −− ++ + pms + + + 4−−− + pms − − + − + − 1− + 1−+ 4− + − + + 44−− −− 1− 1− 4− ++ −− −− 4− 11−− + perms 11−− 4− + 2− − 3− + + + 2− − − 3− − + pm + + bubbles give − − − ++ ++ pm 22−− 1 − − + perms33−− 4− + − + vanishing contribution 1− ++ + − −− 4−− ++ pm pm + 1−− + 1 −− 44−− 12 34 D=8 2ε 1 ResultAnswer ~ = ! "! " K4 K4 = ε(1 ε)I4 − 1•2 34 1 ε 0 [12] [34] D=8 2ε − − −→→ −6 Result ~ ! "! " K4 K4 = ε(1 ε)I4 − − − −ε →0 −6 [12] [34] 1122 3344 → D=8 2ε 11 K = ε(1 ε)I D=8− 2ε ResultResult ~~ !! ""!! ""KK44 K44 = ε(1 ε)4I4 − (Originally deriv[ ed] b[y Bern,] Kosower, and Bern and− Morgan)− −ε ε→00−6 [1122] [3344] − − −→→→ −6 (Originally derived by Bern, Kosower, and Bern and Morgan) (Originall(Originallyy deriv deriveded b byy Bern, Bern, K Kosoosowwerer, ,and and Bern Bern and and Morgan) Morgan) FinitenessFinitenessFiniteness of of the theof theall-min all-min all-minusus amplitude usamplitude amplitude Finiteness of the all-minus amplitude 2 2 2 2 2 InDefine (DR): L D = L 4 + L 2 ε with 2 LD 2= L 2+ L :2= L 2 µ •Define• L D = L 4 + L 2 ε −with LD = L4 + L4 2ε :=2εL4 µ4 • − − − − − 2 2 2 2 2 Define L D = L 4 + L 2 ε with LD = L + L := L µ • •− 4 2ε 4 A finiteA finite, non-zer, non-zero resulto− result arises− arises from from • •finite, non-zero result due to incomplete cancellations of • incomplete cancellations of propagators • A finite, non-zeroincomplete r(inesultverse) arises propagators cancellations from of propagators incomplete cancellations of propagators2 2 2 2 2 L2 L4L2 Lµ24 +µµ2+ µ µ2 µ • 4 = 4= − = += 1+ 2 L2 − 2 L2 1 2 L2 2 2 2 2 LD2 D LD D LD D L4 L4 µ + µ µ 2 = −• 2 = 1+ 2 LD LD! MHV verLticesD are 4-dimensional !• MHVFiniteness vertices comes are as4-dimensional an ε/ε-effect (smells like an anomaly) ! MHV vertices are 4-dimensional !• D-dimensionalAll-min! D-dimensionalus amplitude propagators pr obtainedopagators fr om MHV diagrams, but all-plus amplitude remains mysterious ! D-dimensional propagators Where is the all-plus amplitude? • Go back to the path integral! • Mansfield’s approach: • LC quantisation of Yang-Mills: A-=0 • integrate out A+ (no derivatives w.r.t. LC time x-) • Schematically the action becomes (Scherk-Schwarz) -+ --+ -++ --++ S = S

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    31 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us