Eddy Currents (In Accelerator Magnets)

Eddy Currents (In Accelerator Magnets)

Eddy currents (in accelerator magnets) G. Moritz, GSI Darmstadt CAS Magnets, Bruges, June 16‐25 2009 Introduction • Definition According to Faraday‘s law a voltage is induced in a conductor loop, if it is subjected to a time-varying flux.As a result current flows in the conductor, if there exist a closed path. ‚Eddy currents‘ appear, if extended conducting media are subjected to time varying fields. They are now distributed in the conducting media. • Effects • Field delay (Lenz ´s Law), field distortion • Power loss • Lorentz-forces – Beneficial in some applications (brakes, dampers, shielding, induction heating, levitated train etc.) – Mostly unwanted in accelerator magnets: appropriate design to avoid them / to minimize the unwanted effects. G.Moritz, 'Eddy Currents', CAS Bruges, June 16 ‐ 25 2009 Outline • Introduction – Definition, Effects (desired, undesired) • Basics – Maxwell-equations – Diffusion approach • Analytical solutions: Examples • Numerical solutions: Introduction of numerical codes – Direct application of Maxwell-equations (small perturbation) • Eddy currents in accelerator magnets – Yoke, mechanical structure, resistive coil, beam pipe • Design principles / Summary • Appendix (references) G.Moritz, 'Eddy Currents', CAS Bruges, June 16 ‐ 25 2009 Basics Maxwell-equations •Quasistationary approach •No excess charge Ampere‘s Law H j H ds j dA A B Faraday‘s Law E E ds B dA t t A E 0 E dA 0 A B 0 B dA 0 A Material propertiesB 0 r H j E G.Moritz, 'Eddy Currents', CAS es,Brug June 16 ‐ 25 2009 Lenz‘s law "the emf induced in an electric circuit always acts in such a direction that the current it drives around a closed circuit produces a magnetic field which opposes the change in magnetic flux." Lenz‘s Law: Reason for field delay slow diffusion process G.Moritz, 'Eddy Currents', CAS Bruges, June 16 ‐ 25 2009 Field diffusion equation one way of eddy current calculation vanish j E H j H j () B 2 H H E t t 1 Magnetic diffusivity •Assumption: σ uniform in space •Diffusion equation does also exist also for current density j, magnetic Induction B and magnet Vector Potential A ! •Having solved the differential equation for H, the eddy current density j can be calculated by Ampere‘s Law and consequently the power loss P. Analytical solutions: Half-space conductor (1D-approach)(1) (following closely H.E. Knoepfel ‚Magnetic Fields‘) 2 H H z z x2 t Application of Boundary conditions: external field: Hz(t) Hz(0,t)=0 t<0 Solution H (x,t) = ? z Hz(0,t)= Hz(t) t≥0 Hz(x,0)= 0 0<x<∞ 1. Step‐function field Hz(t) =H0=constant 2. Transient linear field Hz(t) = H0/t0*t 3. Transient sinusoidal field Hz(t) = H0*sin (ωt) G.Moritz, 'Eddy Currents', CAS Bruges, June 16 ‐ 25 2009 Analytical solutions: Half-space conductor (1D-approach) (2) 1. Step‐function field Hz(t) =H0=constant Hz(x,t)=H0*S(x,t) Diffusion time constant With response function S(x,t) 1S x ( ,t ) dt and S(x,0)=0 and S(x,t→∞)=1 d 0 1.0 9 = 110 , 0 0.8 0.6 0.4 (A/m) 0 H 0.2 0.5 cm 1 cm 2 cm 0.0 x -0.02 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 t (sec) 2 t Hz(,) xH t (0 1 erf ) Special response function S(x,t) Similarity variable G.Moritz, 'Eddy Currents', CAS Bruges, June 16 ‐ 25 2009 Analytical solutions: Half-space conductor (1D-approach) (3) 2. Transient linear field Hz(t) = H0/t0*t 0,007 excitation 0,006 0.1 cm 0.2 cm 0,005 0.3 cm 2 0,004 H 0 2 2 H, x t 1t 2 erfc e 0,003 z (A/m) z 0,002 t H 0 0,001 s t 0,000 H(,)(,) xz t Hz x t 0,000 0,001 0,002 0,003 0,004 0,005 0,006 0,007 t (sec) H 0 H 0 t t d x H (,)z x t t 0 t 0 0, if t >>τd Field lag Hed() x Analytical solutions: Half space conductor (1D-approach) (4) 3. Transient sinusoidal field Hz(t) = H0*sin (ωt) s t H(,)(,)(,) x tz Hz x t z H x t stationary transient x x 2 H x(,)s t H sin( e t ) z 0 Harmonic skin pthde G.Moritz, 'Eddy Currents', CAS es,Brug June 16 ‐ 25 2009 Skin depth as function of frequency and conductivity Refer: Knoepfel, fig. 4.2‐5 G.Moritz, 'Eddy Currents', CAS Bruges, June 16 ‐ 25 2009 Analytical solutions: Slab conductor (lamination) Boundary conditions:for step function field H (±d,t)=0 t<0 z Refer to Knoepfel 4.2, Table 4.2‐I Hz(±d,t)= H0 t≥0 Hz(x,0)= 0 ‐d<x<+d Step‐function field (1D) n x cos t 2 4 d 2d H(z , x ) t0 H 1 4 n n n1 e n2 2 n1 n( 12 ) n odd LC iron, 1mm , µr=1000 Step‐function field (2D) 1m sec 1 n x m y cos cos t 2 2 2a 2b 2 n m H( , x , y ) t H 1 4 n, m 4 / z 0 2 e n, m 2 2 n,m odd n1 m1 f (.) n m a b G.Moritz, 'Eddy Currents', CAS es,Brug June 16 ‐ 25 2009 Analytical solutions: Field in the gap of an iron-dominated C- dipole 2 2 For this special H H l H z 2 2 0 case: x y l t g r y G. Brianti et al., CERN SI/Int. DL/71‐3 (1971) g Case1 : g=0 Standard diffusion equation x l g b Case 2: Special diffusion equation l r a 2 2 H H li H 1 H 2 2 0 x y g t 1 t 1 g 1 0 l With this diffusivity κ1 we can use the slab solutions! G.Moritz, 'Eddy Currents', CAS Bruges, June 16 ‐ 25 2009 Analytical vs. numerical methods pros cons Analytical Methods physical •simple geometry understanding (mainly1D/ 2D) •Homogeneous, isotropic and linear materials •simple excitation Numerical Methods •complex geometry long computing (3D) times •inhomogeneous, anisotropic and nonlinear materials •complex excitation G.Moritz, 'Eddy Currents', CAS Bruges, June 16 ‐ 25 2009 Vector Potential A - he mostt common way of numerical eddy current calculation BA B A E A t t t A JE t 2 Field calculation BAJ 2 A A Find vector potential t Diffusion equation for Vector ialenttpo A Sometimes the current vector potential T is d:eus j T Refer: MULTIMAG ‐ program for calculating and optimizing magnetic 2D and 3D fields in roaccelerat magnets (Alexander Kalimov [email protected]])[k Widely used numerical codes for the calculation of eddy current in magnets • Opera (Vector Fields Software, Cobham Techn. Services, Oxford) www.vectorfields.com – FEM – Opera 2d,AC and TR, Opera 3d, ELEKTRA , (TEMPO-thermal and stress-analysis) • ROXIE (Routine for the Optimization of Magnet X-Sections, Inverse Field Calculation and Coil End Design) (S. Russenschuck, CERN) https://espace.cern.ch/roxie/default.aspx – BEM/FEM – Optimization of cosnθ-magnets, coil coupling currents only • ANSYS (ANSYS Inc.) www.ansys.com/ – Finite Element Method – Direct and in-direct coupled analysis (Multiphysics) • eddy current heat rising temperature change resistivity change eddy current – “This feature is important especially in the region of cryogenic temperature. Because most of physical parameters depend highly on temperature in that region” . G.Moritz, 'Eddy Currents', CAS Bruges, June 16 ‐ 25 2009 Direct application of maxwell equations -another ay of eddy current calculationw Eddy Current effect handled as small perturbation: •geometrical dimension << skin depth (high resistivity!) •low field ramp rate B=(0,0, Bz) 1. Eddy currents in a rectangular thin plate • assumptions •Field Bz only, uniform z •d,h<<l l •d,h<<penetration depth s y x (magnetically thin!) d •Steady state: t>>τd h ‐d/2 0 +d/2 neglecting the resistance From Faraday´s law (integral form) B z jy() x x contribution of the ends, since 2d<<l 2 2 From Ampere‘s law: B z d Heddy() x x2 z 2 4 Top/bottom of a G.Moritz, 'Eddy Currents', CAS es,Brug rectangular beam pipe! June 16 ‐ 25 2009 And then for the loss dP l 2 2 dPj xy() A l jy () x h dx in an area A=hdx: A d 2 3 2 2 lh d 2 1 d After integration P2 B dP orz P/ volume B z 0 12 12 8 8000 Same formula as for a thin SST, = 5E-7 m slab! CU, = 5E-10 m 6 6000 formula FEM formula FEM 4 (watt/m) 4000 For Copper: No small 2 2000 perturbation anymore! Joule heat (watt/m) Joule heat 0 0 012345 012345 dB/dt (T/sec) dB/dt (T/sec) 2. Eddy loss in a long,thin cylinder (radius r, length l, (round thin beam pipe) thickness d (r>>d)) r cos r3 r 2 j B P B 2 dl orP B 2 V 2 3. Eddy loss of round plate/disk (radius r, thickness d , r>>d) 2 r 2 G.Moritz, 'Eddy Currents', CAS Bruges, P B June 16 ‐ 25 2009 V 8 Resistivity ρ (Ohm*m) @300K/4K (typical) 300K 4K LC steel (3% Silicon) 590 10‐9 440 x 10‐9 ‐9 ‐9 Stainless steel 720 10 490 10 Copper 17.4 10‐9 0.156 10‐9 Avoid copper! G.Moritz, 'Eddy Currents', CAS Bruges, June 16 ‐ 25 2009 Eddy currents in magnets Different Magnet types WF Eddy currents in all conductive elements, especially in: •iron yoke (low carbon iron) Iron‐dominated •mechanical structure (low carbon iron magnets • or stainless steel) •Coil (Copper, superconductor) • beam pipe (stainless steel G.Moritz, 'Eddy Currents', CAS Bruges,Coil dominated cos nθ‐ magnet June 16 ‐ 25 2009 Laminated yoke (no isotropy!!) Laminated magnets with insulated Recap: thin slab 2 P~d *σ laminations and low conductivity!! Packing factor fp = Wi / (Wi + Wa ) W ‐ thickness single lamination Def.: i Wa ‐ thickness of insulation Conductivity: σz=0 σxy≠0 FLUX Rel.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    43 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us