Introduction to Hyperfunctions and Their Integral Transforms

Introduction to Hyperfunctions and Their Integral Transforms

[chapter] [chapter] [chapter] 1 2 Introduction to Hyperfunctions and Their Integral Transforms Urs E. Graf 2009 ii Contents Preface ix 1 Introduction to Hyperfunctions 1 1.1 Generalized Functions . 1 1.2 The Concept of a Hyperfunction . 3 1.3 Properties of Hyperfunctions . 13 1.3.1 Linear Substitution . 13 1.3.2 Hyperfunctions of the Type f(φ(x)) . 15 1.3.3 Differentiation . 18 1.3.4 The Shift Operator as a Differential Operator . 25 1.3.5 Parity, Complex Conjugate and Realness . 25 1.3.6 The Equation φ(x)f(x) = h(x)............... 28 1.4 Finite Part Hyperfunctions . 33 1.5 Integrals . 37 1.5.1 Integrals with respect to the Independent Variable . 37 1.5.2 Integrals with respect to a Parameter . 43 1.6 More Familiar Hyperfunctions . 44 1.6.1 Unit-Step, Delta Impulses, Sign, Characteristic Hyper- functions . 44 1.6.2 Integral Powers . 45 1.6.3 Non-integral Powers . 49 1.6.4 Logarithms . 51 1.6.5 Upper and Lower Hyperfunctions . 55 α 1.6.6 The Normalized Power x+=Γ(α + 1) . 58 1.6.7 Hyperfunctions Concentrated at One Point . 61 2 Analytic Properties 63 2.1 Sequences, Series, Limits . 63 2.2 Cauchy-type Integrals . 71 2.3 Projections of Functions . 75 2.3.1 Functions satisfying the H¨olderCondition . 77 2.3.2 Projection Theorems . 78 2.3.3 Convergence Factors . 87 2.3.4 Homologous and Standard Hyperfunctions . 88 2.4 Projections of Hyperfunctions . 91 2.4.1 Holomorphic and Meromorphic Hyperfunctions . 91 2.4.2 Standard Defining Functions . 94 2.4.3 Micro-analytic Hyperfunctions . 110 iii 2.4.4 Support, Singular Support and Singular Spectrum . 110 2.5 Product of Hyperfunctions . 113 2.5.1 Product of Upper or Lower Hyperfunctions . 114 2.5.2 Products in the Case of Disjoint Singular Supports . 115 2.5.3 The Integral of a Product . 119 2.5.4 Hadamard's Finite Part of an Integral . 125 2.6 Periodic Hyperfunctions and Their Fourier Series . 128 2.7 Convolutions of Hyperfunctions . 137 2.7.1 Definition and Existence of the Convolution . 137 2.7.2 Sufficient Conditions for the Existence of Convolutions . 141 2.7.3 Operational Properties . 144 2.7.4 Principal Value Convolution . 149 2.8 Integral Equations I . 151 3 Laplace Transforms 155 3.1 Loop Integrals . 155 3.2 The Two-Sided Laplace Transform . 159 3.2.1 The Classical Laplace Transform . 159 3.3 Laplace Transforms of Hyperfunctions . 162 3.4 Transforms of some Familiar Hyperfunctions . 171 3.4.1 Dirac Impulses and their Derivatives . 171 3.4.2 Non negative Integral Powers . 173 3.4.3 Negative Integral Powers . 174 3.4.4 Non integral Powers . 174 3.4.5 Powers with Logarithms . 175 3.4.6 Exponential Integrals . 177 3.4.7 Transforms of Finite Part Hyperfunctions . 182 3.5 Operational Properties . 188 3.5.1 Linearity . 188 3.5.2 Image Translation Rule . 189 3.5.3 The Multiplication or Image Differentiation Rule . 192 3.5.4 Similarity Rule . 193 3.5.5 Differentiation Rule . 194 3.5.6 Integration Rule . 198 3.5.7 Original Translation Rule . 200 3.5.8 Linear Substitution Rules . 201 3.6 Inverse Laplace Transforms and Convolutions . 203 3.6.1 Inverse Laplace Transforms . 203 3.6.2 The Convolution Rule . 214 3.6.3 Fractional Integrals and Derivatives . 222 3.7 Right-sided Laplace Transforms . 223 3.8 Integral Equations II . 226 3.8.1 Volterra Integral Equations of Convolution Type . 226 3.8.2 Convolution Integral Equations over an Infinite Range . 231 4 Fourier Transforms 239 4.1 Fourier Transforms of Hyperfunctions . 239 4.1.1 Basic Definitions . 239 4.1.2 Connection to Laplace Transformation . 242 4.2 Fourier Transforms of Some Familiar Hyperfunctions . 244 iv 4.3 Inverse Fourier Transforms . 249 4.3.1 Reciprocity . 252 4.4 Operational Properties . 253 4.4.1 Linear Substitution Rule . 254 4.4.2 Shift-Rules . 255 4.4.3 Complex Conjugation and Realness . 255 4.4.4 Differentiation and Multiplication Rule . 256 4.4.5 Convolution Rules . 258 4.5 Further Examples . 263 4.6 Poisson's Summation Formula . 264 4.7 Application to Integral and Differential Equations . 267 4.7.1 Integral Equations III . 268 4.7.2 Heat Equation and Weierstrass Transformation . 270 5 Hilbert Transforms 273 5.1 Hilbert Transforms of Hyperfunctions . 273 5.1.1 Definition and Basic Properties . 273 5.1.2 Operational Properties . 287 5.1.3 Using Fourier Transforms . 290 5.2 Analytic Signals and Conjugate Hyperfunctions . 293 5.3 Integral Equations IV . 297 6 Mellin Transforms 307 6.1 The Classical Mellin Transformation . 307 6.2 Mellin Transforms of Hyperfunctions . 311 6.3 Operational Properties . 313 6.3.1 Linearity . 313 6.3.2 Scale Changes . 313 6.3.3 Multiplication by (log x)n .................. 314 6.3.4 Multiplication by xµ; µ 2 C ................. 315 6.3.5 Reflection . 315 6.3.6 Differentiation Rules . 316 6.3.7 Integration Rules . 317 6.4 Inverse Mellin Transformation . 318 6.5 M-Convolutions . 320 6.5.1 Reciprocal Integral Transforms . 323 6.5.2 Transform of a Product and Parseval's Formula . 324 6.6 Applications . 325 6.6.1 Dirichlet's Problem in a Wedge-shaped Domain . 325 6.6.2 Euler's Differential Equation . 327 6.6.3 Integral Equations V . 329 6.6.4 Summation of Series . 330 7 Hankel Transforms 335 7.1 Hankel Transforms of Ordinary Functions . 335 7.1.1 Genesis of the Hankel Transform . 335 7.1.2 Cylinder Functions . 338 7.1.3 Lommel's Integral . 344 7.1.4 MacRobert's Proof . 346 7.1.5 Some Hankel Transforms of Ordinary Functions . 347 v 7.1.6 Operational Properties . 350 7.2 Hankel Transforms of Hyperfunctions . 354 7.2.1 Basic Definitions . 354 7.2.2 Transforms of some Familiar Hyperfunctions . 356 7.2.3 Operational Properties . 361 7.3 Applications . 365 A Complements 371 A.1 Physical Interpretation of Hyperfunctions . 371 A.1.1 Flow Fields and Holomorphic Functions . 371 A.1.2 P´olya fields and Defining Functions . 373 A.2 Laplace Transforms in the Complex Plane . 375 A.2.1 Functions of Exponential Type . 375 A.2.2 Laplace Hyperfunctions and their Transforms . 384 A.3 Some Basic Theorems of Function Theory . 387 A.3.1 Interchanging Infinite Series with Improper Integrals . 387 A.3.2 Reversing the Order of Integration . 389 A.3.3 Defining Holomorphic Functions by Series and Integrals . 389 B Tables 393 B.0.4 Convolution Properties of Hyperfunctions . 393 B.0.5 Operational Rules for the Laplace Transformation . 393 B.0.6 Some Laplace Transforms of Hyperfunctions . 394 B.0.7 Operational Rules for the Fourier Transformation . 396 B.0.8 Some Fourier Transforms of Hyperfunctions . 396 B.0.9 Operational Rules for the Hilbert Transformation . 398 B.0.10 Some Hilbert Transforms of Hyperfunctions . 399 B.0.11 Operational Rules for the Mellin Transformation . 400 B.0.12 Some Mellin Transforms of Hyperfunctions . 401 B.0.13 Operational Rules for the Hankel Transformation . 402 B.0.14 Some Hankel Transforms of order ν of Hyperfunctions . 403 B.1 List of Symbols . 404 vi List of Figures 1.1 Complex neighborhood D(I).................... 3 1.2 Intuitive picture of the Dirac impulse . 8 1.3 Intuitive picture of the unit-step . 9 1.4 Intuitive picture of the first derivative of the Dirac impulse . 19 1.5 Intuitive picture of the second derivative of the Dirac impulse . 21 1.6 Piecewise real analytic function. 22 1.7 Intuitive picture of fp(1/x) . 35 1.8 Intuitive picture of fp(1=(x − a)2 .................. 36 + − 1.9 Contours γa;b and γa;b ........................ 38 1.10 Closed contour γ = (a; b)....................... 39 1.11 Contour for Example 1.29 . 40 1.12 Integration loop (−a; 1)....................... 42 1.13 Integration loop (−∞; as)...................... 42 1.14 Intuitive picture of fp(sgn(x) log jxj=x).............. 55 2.1 For the proof of Lemma 2.4 . 73 2.2 To Lemma 2.8 . 79 2.3 Contour in Example 2.9 . 83 2.4 Contours for Definition 2.22 . ..

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    18 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us