Lecture 1 Derivation of the IMF Expected Variations

Lecture 1 Derivation of the IMF Expected Variations

Stellar populations and star clusters as galactic building blocks Lecture 1 Derivation of the IMF Expected variations Selected Chapters on Astrophysics Charles University, Praha, November & December 2015 Pavel Kroupa Argelander Institute for Astronomy (AIfA) University of Bonn Pavel Kroupa: Praha Lecture I Donnerstag, 26. November 15 1 Lecture 1 : The stellar IMF : solar neighbourhood as average IMF theoretical expectations : a variable IMF Lecture 2 : The stellar IMF : constraints from star-forming events : a non-varying IMF Lecture 3 : The integrated galactic initial mass function (IGIMF) : a new theory How to calculate the stellar population of a galaxy. Lecture 4 : The stellar binary population: deriving the birth distribution functions Binary dynamical population synthesis: the stellar populations of galaxies Pavel Kroupa: Praha Lecture I Donnerstag, 26. November 15 2 Knowing how many stars and of which type are born is the pre-requisite to understanding the formation of structure in matter. Pavel Kroupa: Praha Lecture I Donnerstag, 26. November 15 3 IMF = the distribution of stellar masses born together . ξ(m) dm = dN =Nr. of stars in interval [m, m + dm] α1 ∝ −αi logdN/dlog(m) ξ(m) m α2 M stars G stars O stars log(m) Pavel Kroupa: Praha Lecture I Donnerstag, 26. November 15 4 canonical / standard / universal two-part power-law stellar IMF : −α ξ(m) ∝ m i α1 =1.3 logdN/dlog(m) α2 =2.3 (Salpeter) ↵0 =0.3 Kroupa et al. 2013 IMF Review BDs α3,Massey =2.3 M stars G stars O stars 0 log(m) 0.08 M 150 M Pavel Kroupa: Praha Lecture I Donnerstag, 26. November 15 5 Pavel Kroupa: Praha Lecture I Donnerstag, 26. November 15 6 Why is the stellar Initial Mass Function (IMF) important ? To know how much dark mass is in faint stars To understand the matter cycle To understand how shining-matter is distributed As a boundary condition for star-formation theory Pavel Kroupa: Praha Lecture I Donnerstag, 26. November 15 7 Pavel Kroupa: Praha Lecture I Donnerstag, 26. November 15 8 inlcluding BDs Pavel Kroupa: Praha Lecture I Donnerstag, 26. November 15 9 O star G star M star N = 1stars N = 104.1 stars N = 105.5 stars 33 M =63M! M =1M!(= 2 × 10 g) M =0.15 M! 6 33 −2.5 L =10 L! L =1L!(= 3.8 × 10 erg/s) L =10 L" τ =106.2 yr τ =10× 109 yr τ > 1011 yr 10 R =20R! R =1R!(= 7 × 10 cm) R =0.20 R! Te =35000K Te =5000K Te =3300K Pavel Kroupa: Praha Lecture I Donnerstag, 26. November 15 10 1 000 000 M stars combine to 100 000 M ! but only 3.5 10 L! ! LO star 8 7 One O star (60 M ! ) out-shines 10 M stars ( 10 M ! ). Pavel Kroupa: Praha Lecture I Donnerstag, 26. November 15 11 From these numbers it becomes immediately apparent that it is of much importance to know the shape of the IMF below about 1 M . This forces us to count the stars in our immediate solar neighbourhood. Pavel Kroupa: Praha Lecture I Donnerstag, 26. November 15 12 The solar neighbourhood Pavel Kroupa: Praha Lecture I Donnerstag, 26. November 15 13 The distribution of stars We have dN = Ψ(MV) dMV = # of stars with MV ∈ [MV,MV + dMV] dN = ξ(m) dm = # of stars with m ∈ [m, m + dm] dN dm dN since = − dMV dMV dm dm follows Ψ(MV)=− ξ(m) dMV the observable the target the obstacle Pavel Kroupa: Praha Lecture I Donnerstag, 26. November 15 14 There are two luminosity functions for the solar neighbourhood . Count stars nearby to Sun (within 5 pc for M dwarfs; I 20 pc for G dwarfs) Obtain M V and d from trigonometric parallax −→ Well observed individual stars but small numbers at faint end ( Ψ near ) II. Deep (100 - 300 pc) pencil-beam photographic/CCD surveys Formidable data reduction (105 images −→ ≈ 100 stars) Obtain M V and d from photometric parallax −→ Large # of stars but poor resolution (2”-3”) and Malmquist bias (Ψ phot ) Pavel Kroupa: Praha Lecture I Donnerstag, 26. November 15 15 There are two luminosity functions for the solar neighbourhood . Count stars nearby to Sun (within 5 pc for M dwarfs; I 20 pc for G dwarfs) Obtain M V and d from trigonometric parallax −→ Well observed individual stars but small numbers at faint end ( Ψ near ) II. Deep (100 - 300 pc) pencil-beam photographic/CCD surveys Formidable data reduction (105 images −→ ≈ 100 stars) Obtain M V and d from photometric parallax −→ Large # of stars but poor resolution (2”-3”) and Malmquist bias (Ψ phot ) Pavel Kroupa: Praha Lecture I Donnerstag, 26. November 15 16 The possibility of dark matter in the Galactic disk (Bahcall 1984) −→ Many surveys of type II (pencil-beams) to constrain the LF : Pavel Kroupa: Praha Lecture I Donnerstag, 26. November 15 17 The possibility of dark matter in the Galactic disk (Bahcall 1984) −→ Many surveys of type II (pencil-beams) to constrain the LF : Reid & Gilmore 1982 Gilmore, Reid & Hewett 1985 Hawkins & Bessell 1988 ground Leggett & Hawkins 1988 Stobie, Ishida & Peacock 1989 Tinney, Reid & Mould 1993 Kirkpatrick et al. 1994 Gould, Bahcall & Flynn 1997 HST Zheng, Flynn, Gould et al. 2001 Pavel Kroupa: Praha Lecture I Donnerstag, 26. November 15 18 Ψ - independent of direction phot { - maximum (peak) at MV ≈ 12 dm Ψ(MV)=− ξ(m) dMV Pavel Kroupa: Praha Lecture I Donnerstag, 26. November 15 19 dm Two solar-neighbourhood samples: Ψ(MV)=− ξ(m) dMV I. nearby II. deep Pavel Kroupa: Praha Lecture I Donnerstag, 26. November 15 20 dm Two solar-neighbourhood samples: Ψ(MV)=− ξ(m) dMV I. nearby ? Stellar II. deep samples should be well-mixed: σ ≈ 25 km/s=250pc/10Myr Pavel Kroupa: Praha Lecture I Donnerstag, 26. November 15 21 So . who thought merely counting stars is boring ? Pavel Kroupa: Praha Lecture I Donnerstag, 26. November 15 22 Problem : The nearby and deep LFs are not equal. Which LF do we use to calculate the MF ? −1 dm ξ(m)=− Ψ(MV ) !dMV " Pavel Kroupa: Praha Lecture I Donnerstag, 26. November 15 23 Understand detailed shape of LF dm Ψ(MV)=− ξ(m) from fundamental principles : dMV bright faint Pavel Kroupa: Praha Lecture I Donnerstag, 26. November 15 24 Understand detailed shape of LF dm Ψ(MV)=− ξ(m) from fundamental principles : dMV Kroupa, Tout & Gilmore 1991 bright faint Pavel Kroupa: Praha Lecture I Donnerstag, 26. November 15 25 The mass- luminosity relation of low-mass stars dm Ψ(MV)=− ξ(m) dMV Kroupa, 2002, Science Pavel Kroupa: Praha Lecture I Donnerstag, 26. November 15 26 The mass- luminosity relation of low-mass stars dm Ψ(MV)=− ξ(m) dMV 1. position 2. width 3. amplitude all agree ! Kroupa, 2002, Science Pavel Kroupa: Praha Lecture I Donnerstag, 26. November 15 27 dm Ψ(MV)=− ξ(m) dMV Pavel Kroupa: Praha Lecture I Donnerstag, 26. November 15 28 dm Ψ(MV)=− ξ(m) dMV Pavel Kroupa: Praha Lecture I Donnerstag, 26. November 15 29 dm Ψ(MV)=− ξ(m) dMV Pavel Kroupa: Praha Lecture I Donnerstag, 26. November 15 30 dm Ψ(MV)=− ξ(m) dMV Pavel Kroupa: Praha Lecture I Donnerstag, 26. November 15 31 ( van Hippel, Location Gilmore et of the al. 1996; maximum Kroupa & of the LF Tout 1997 ) with [Fe/H] (D’Antonna & Mazzitelli 1996) (Kroupa & Tout 1997) (D’Antonna & Mazzitelli 1996) Pavel Kroupa: Praha Lecture I Donnerstag, 26. November 15 32 The maximum near MV ≈ 12; M I ≈ 9 is universal and well understood. Pavel Kroupa: Praha Lecture I Donnerstag, 26. November 15 33 By counting the stars on the sky we look into the constitution of their interiors ! Pavel Kroupa: Praha Lecture I Donnerstag, 26. November 15 34 The maximum near MV ≈ 12; M I ≈ 9 is universal and well understood. But we are still trying to understand the Problem : the local LF discrepancy... Pavel Kroupa: Praha Lecture I Donnerstag, 26. November 15 35 dm Ψ(MV)=− ξ(m) Two solar-neighbourhood samples: dMV . understand the peak, but a problem remains . ? Sun Pavel Kroupa: Praha Lecture I Donnerstag, 26. November 15 36 Multiple systems : Nearby-sample: - stars are well resolved and - individually well-scrutinised. Distant (pencil-beam) samples: - poor resolution - but even if formally resolved, faint companions are missed because - differing survey distance limits for primary and companion(s) - glare - unresolved multiples appear closer −→ bias in density estimates Pavel Kroupa: Praha Lecture I Donnerstag, 26. November 15 37 Multiple systems : Nearby-sample: - stars are well resolved and - individually well-scrutinised. Distant (pencil-beam) samples: - poor resolution - but even if formally resolved, faint companions are missed because - differing survey distance limits for primary and companion(s) - glare - unresolved multiples appear closer −→ bias in density estimates Pavel Kroupa: Praha Lecture I Donnerstag, 26. November 15 38 Multiple systems : Nearby-sample: - stars are well resolved and - individually well-scrutinised. Distant (pencil-beam) samples: - poor resolution - but even if formally resolved, faint companions are missed because - differing survey distance limits for primary and companion(s) - glare - unresolved multiples appear closer −→ bias in density estimates Pavel Kroupa: Praha Lecture I Donnerstag, 26. November 15 39 Multiple systems : Counting example: Observer sees 100 systems: 40 are binaries unknown is that 15 are triples 5 are quadruples 40 + 15 + 5 fmult = =0.60 100 but 85 (= 40 + 2x15 + 3x5) stars are missed. Correct treatment of this important bias solves the LF discrepancy ! (Kroupa, Tout & Gilmore 1991, 1993) Pavel Kroupa: Praha Lecture I Donnerstag, 26. November 15 40 Find the one MF which fits both LFs : LF individual-star LF get MF directly but large uncertainty multiple-star LF small uncertainty but need info on binaries 12 Mv Pavel Kroupa: Praha Lecture I Donnerstag, 26.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    46 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us