Electro Magnetic Field Theory Υ

Electro Magnetic Field Theory Υ

“main” 2000/11/13 page 1 ELECTRO MAGNETIC FIELD THEORY Υ Bo Thidé U P S I L O N M E D I A “main” 2000/11/13 page 2 “main” 2000/11/13 page 3 Bo Thidé ELECTROMAGNETIC FIELD THEORY “main” 2000/11/13 page 4 Also available ELECTROMAGNETIC FIELD THEORY EXERCISES by Tobia Carozzi, Anders Eriksson, Bengt Lundborg, Bo Thidé and Mattias Waldenvik “main” 2000/11/13 page 1 ELECTROMAGNETIC FIELD THEORY Bo Thidé Swedish Institute of Space Physics and Department of Astronomy and Space Physics Uppsala University, Sweden Υ U P S I L O N M E D I A U P P S A L A S W E D E N · · “main” 2000/11/13 page 2 This book was typeset in LATEX 2ε on an HP9000/700 series workstation and printed on an HP LaserJet 5000GN printer. Copyright ©1997, 1998, 1999 and 2000 by Bo Thidé Uppsala, Sweden All rights reserved. Electromagnetic Field Theory ISBN X-XXX-XXXXX-X “main” 2000/11/13 page i Contents Preface xi 1 Classical Electrodynamics 1 1.1 Electrostatics . 1 1.1.1 Coulomb’s law . 1 1.1.2 The electrostatic field . 2 1.2 Magnetostatics . 4 1.2.1 Ampère’s law . 4 1.2.2 The magnetostatic field . 6 1.3 Electrodynamics . 8 1.3.1 Equation of continuity . 9 1.3.2 Maxwell’s displacement current . 9 1.3.3 Electromotive force . 10 1.3.4 Faraday’s law of induction . 11 1.3.5 Maxwell’s microscopic equations . 14 1.3.6 Maxwell’s macroscopic equations . 14 1.4 Electromagnetic Duality . 15 Example 1.1 Duality of the electromagnetodynamic equations 16 Example 1.2 Maxwell from Dirac-Maxwell equations for a fixed mixing angle . 17 Example 1.3 The complex field six-vector . 18 Example 1.4 Duality expressed in the complex field six-vector 19 Bibliography . 20 2 Electromagnetic Waves 23 2.1 The wave equation . 24 2.1.1 The wave equation for E . 24 2.1.2 The wave equation for B . 24 2.1.3 The time-independent wave equation for E . 25 2.2 Plane waves . 26 2.2.1 Telegrapher’s equation . 27 i “main” 2000/11/13 page ii ii CONTENTS 2.2.2 Waves in conductive media . 29 2.3 Observables and averages . 30 Bibliography . 31 3 Electromagnetic Potentials 33 3.1 The electrostatic scalar potential . 33 3.2 The magnetostatic vector potential . 34 3.3 The electromagnetic scalar and vector potentials . 34 3.3.1 Electromagnetic gauges . 36 Lorentz equations for the electromagnetic potentials . 36 Gauge transformations . 36 3.3.2 Solution of the Lorentz equations for the electromag- netic potentials . 38 The retarded potentials . 41 Bibliography . 41 4 The Electromagnetic Fields 43 4.1 The magnetic field . 45 4.2 The electric field . 47 Bibliography . 49 5 Relativistic Electrodynamics 51 5.1 The special theory of relativity . 51 5.1.1 The Lorentz transformation . 52 5.1.2 Lorentz space . 53 Metric tensor . 54 Radius four-vector in contravariant and covariant form 54 Scalar product and norm . 55 Invariant line element and proper time . 56 Four-vector fields . 57 The Lorentz transformation matrix . 57 The Lorentz group . 58 5.1.3 Minkowski space . 58 5.2 Covariant classical mechanics . 61 5.3 Covariant classical electrodynamics . 62 5.3.1 The four-potential . 62 5.3.2 The Liénard-Wiechert potentials . 63 5.3.3 The electromagnetic field tensor . 65 Bibliography . 67 Downloaded from http://www.plasma.uu.se/CED/Book Draft version released 13th November 2000 at 22:01. “main” 2000/11/13 page iii iii 6 Interactions of Fields and Particles 69 6.1 Charged Particles in an Electromagnetic Field . 69 6.1.1 Covariant equations of motion . 69 Lagrange formalism . 69 Hamiltonian formalism . 72 6.2 Covariant Field Theory . 76 6.2.1 Lagrange-Hamilton formalism for fields and interactions 77 The electromagnetic field . 80 Example 6.1 Field energy difference expressed in the field tensor . 81 Other fields . 84 Bibliography . 85 7 Interactions of Fields and Matter 87 7.1 Electric polarisation and the electric displacement vector . 87 7.1.1 Electric multipole moments . 87 7.2 Magnetisation and the magnetising field . 90 7.3 Energy and momentum . 91 7.3.1 The energy theorem in Maxwell’s theory . 92 7.3.2 The momentum theorem in Maxwell’s theory . 93 Bibliography . 95 8 Electromagnetic Radiation 97 8.1 The radiation fields . 97 8.2 Radiated energy . 99 8.2.1 Monochromatic signals . 100 8.2.2 Finite bandwidth signals . 100 8.3 Radiation from extended sources . 102 8.3.1 Linear antenna . 102 8.4 Multipole radiation . 104 8.4.1 The Hertz potential . 104 8.4.2 Electric dipole radiation . 108 8.4.3 Magnetic dipole radiation . 109 8.4.4 Electric quadrupole radiation . 110 8.5 Radiation from a localised charge in arbitrary motion . 111 8.5.1 The Liénard-Wiechert potentials . 112 8.5.2 Radiation from an accelerated point charge . 114 Example 8.1 The fields from a uniformly moving charge . 121 Example 8.2 The convection potential and the convection force . 123 Draft version released 13th November 2000 at 22:01. Downloaded from http://www.plasma.uu.se/CED/Book “main” 2000/11/13 page iv iv CONTENTS Radiation for small velocities . 125 8.5.3 Bremsstrahlung . 127 Example 8.3 Bremsstrahlung for low speeds and short ac- celeration times . 130 8.5.4 Cyclotron and synchrotron radiation . 132 Cyclotron radiation . 134 Synchrotron radiation . 134 Radiation in the general case . 137 Virtual photons . 137 8.5.5 Radiation from charges moving in matter . 139 Vavilov-Cerenkˇ ov radiation . 142 Bibliography . 147 F Formulae 149 F.1 The Electromagnetic Field . 149 F.1.1 Maxwell’s equations . 149 Constitutive relations . 149 F.1.2 Fields and potentials . 149 Vector and scalar potentials . 149 Lorentz’ gauge condition in vacuum . 150 F.1.3 Force and energy . 150 Poynting’s vector . 150 Maxwell’s stress tensor . 150 F.2 Electromagnetic Radiation . 150 F.2.1 Relationship between the field vectors in a plane wave 150 F.2.2 The far fields from an extended source distribution . 150 F.2.3 The far fields from an electric dipole . 150 F.2.4 The far fields from a magnetic dipole . 151 F.2.5 The far fields from an electric quadrupole . 151 F.2.6 The fields from a point charge in arbitrary motion . 151 F.2.7 The fields from a point charge in uniform motion . 151 F.3 Special Relativity . 152 F.3.1 Metric tensor . 152 F.3.2 Covariant and contravariant four-vectors . 152 F.3.3 Lorentz transformation of a four-vector . 152 F.3.4 Invariant line element . 152 F.3.5 Four-velocity . 152 F.3.6 Four-momentum . 153 F.3.7 Four-current density . 153 F.3.8 Four-potential . 153 Downloaded from http://www.plasma.uu.se/CED/Book Draft version released 13th November 2000 at 22:01. “main” 2000/11/13 page v v F.3.9 Field tensor . 153 F.4 Vector Relations . 153 F.4.1 Spherical polar coordinates . 154 Base vectors . 154 Directed line element . 154 Solid angle element . 154 Directed area element . 154 Volume element . 154 F.4.2 Vector formulae . 154 General relations . 154 Special relations . 156 Integral relations . 157 Bibliography . 157 Appendices 148 M Mathematical Methods 159 M.1 Scalars, Vectors and Tensors . 159 M.1.1 Vectors . 159 Radius vector . 159 M.1.2 Fields . 161 Scalar fields . 161 Vector fields . 161 Tensor fields . 162 Example M.1 Tensors in 3D space . 164 M.1.3 Vector algebra . 167 Scalar product . 167 Example M.2 Inner products in complex vector space . 167 Example M.3 Scalar product, norm and metric in Lorentz space . 168 Example M.4 Metric in general.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    202 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us