Microbial Communities Performing Anaerobic Oxidation of Methane: Diversity of Lipid Signatures and Habitats

Microbial Communities Performing Anaerobic Oxidation of Methane: Diversity of Lipid Signatures and Habitats

Microbial communities performing anaerobic oxidation of methane: diversity of lipid signatures and habitats Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften - Dr. rer. Nat. - Am Fachbereich Geowissenschaften der Universität Bremen vorgelegt von Pamela E. Rossel Cartes Bremen Februar 2009 1. Gutachter: Prof. Dr. Kai-Uwe Hinrichs, University of Bremen, Germany 2. Gutachter: Prof. Dr. Antje Boetius, Max Planck Institute for Marine Microbiology, Bremen, Germany No viniste de lejos, ni siquiera has llegado. Estabas desde siempre, como un lenguaje escrito en el fondo de mí… Para Xavi con mucho amor TABLE OF CONTENTS Abstract Thesis abstract……………………………………………………..I Kurzfassung……………………………………………………...III Acknowledgements………………………………………………………………………V List of Figures……………………………………………………….............................VII List of Tables………………………………………………………................................IX List of Abbreviations………………………………………………………....................X Chapter I: Introduction…………………………………………………….................1 General introduction………………………………………………………2 I.1. Properties and importance of methane………………………………..2 I.2. Production and consumption of methane……………………………..4 I.3. Microbial communities performing AOM…………………..............11 I.4. Distribution/Habitats of AOM communities………………………...13 I.5. Lipid signatures of communities performing AOM…………………18 I.6. Intact polar membrane lipids (IPLs)…..……………………………..21 I.7. Methods……………………………………………………………...28 I.8. Hypothesis and objectives…………………………………………...29 I.9. Contribution to publications…………………………………………30 I.10. References………………………………………………………….33 Chapter II: Intact polar lipids of anaerobic methanotrophic archaea and……………45 associated bacteria II.1. Printed manuscript…………………………………………………..46 II.2. Supplementary online material……………………………………...61 Chapter III: Factors controlling the distribution of anaerobic………………………...63 methanotrophic communities in marine environments: evidence from intact polar membrane lipids III.1. Manuscript…………………………………………………………64 III.2. Supplementary material………..…………………...…………….106 Chapter IV: Experimental approach to evaluate stability and reactivity…………….111 of intact polar membrane lipids of archaea and bacteria in marine sediments Chapter V: Diversity of intact polar membrane lipids in marine…………………...125 seep environments Chapter VI: Concluding remarks and perspectives………………………………….149 VI.1. Conclusions……………………………………………………….150 VI.2. Future perspectives……………………………………………….155 VI.3. Presentations and other activities…………………………………159 Thesis abstract ________________________________________________________________________ THESIS ABSTRACT The main aim of this thesis was to study different microbial communities involved in the process of anaerobic oxidation of methane (AOM) using lipid analysis. During this work a variety of globally distributed methane-bearing systems characterized by different environmental factors and anaerobic methanotrophic consortia were analyzed for intact polar lipid (IPL) and apolar lipid composition. Moreover, an experiment was designed in order to evaluate the stability of archaeal and bacterial IPLs in marine sediments. The three phylogenetically distinct clusters of Euryarchaeota called ANME-1, -2 and -3, which have been observed in association with sulfate-reducing bacteria of the Desulfosarcina/Desulfococcus group (‘‘ANME-1/DSS and -2/DSS aggregates”) or Desulfobulbus spp (‘‘ANME-3/DBB aggregates”) could be clearly distinguished by IPL composition but not by apolar lipids. ANME-1/DSS was characterized by glyceroldialkylglyceroltetraethers (GDGTs) with glycosidic, phospho, as well as mixed of both , whereas diagnostic IPLs of ANME-2/DSS were archaeols with both glycosidic and phospho headgroups. Distinctly, ANME-3/DBB contained neither glycosidic- archaeols nor GDGT-based IPLs, but the phospho-archaeol composition was very similar to ANME-2/DSS. The main and distinguishing feature of ANME-3/DBB was the high contribution of the bacterial IPLs phosphatidyl-(N)-methylethanolamine (PME) and phosphatidyl-(N,N)-dimethylethanolamine (PDME). Other bacterial IPLs that were mainly found in ANME-2/DSS-dominated carbonate mats were IPLs with non-phospho headgroups such as ornithine lipids, surfactins and betaine lipids, the latter with odd fatty acid chains. In contrast, IPLs with phospho headgroups were generally more abundant in sediment environments. The high contribution of glycosidic archaeal IPLs and the presence of bacterial IPLs with non-phospho headgroups in carbonate mats can be explained by adsorption of phosphate onto calcium carbonate. In addition to the general differences in IPL composition of each of three AOM- community types, the IPL distribution was also associated with several environmental factors, allowing the characterization of their different habitats. ANME-1/DSS dominates I Thesis abstract ________________________________________________________________________ habitats with high temperature and low oxygen content in bottom waters. For ANME- 2/DSS systems, it was possible to differentiate between carbonate reef habitats and sediment settings, with the former characterized by low temperature, high oxygen content in bottom waters and high methane and sulfate concentrations, whereas the latter was associated with higher sulfate reduction rates. ANME-3/DBB presented similar environmental characteristics to ANME-2/DSS. Furthermore, degradation of archaeal and bacterial IPLs was evaluated in marine sediments, showing a loss of 80% for the archaeal and ~50% for the bacterial IPL at 5°C after 465 days of incubation under sterile conditions. However, in non-sterile conditions at 5°C, an increase in concentration of both IPLs at the end of the experiment was observed. Therefore, biotic degradation of IPLs could not be proved because the pools of produced and degraded IPLs in the non-sterile conditions were indistinguishable. The results obtained during this thesis support the distinction of microbial communities performing AOM based on IPL diversity and address the role of environmental factors in the distribution of three major AOM-community types. This work contributes substantially to the understanding of the distribution of AOM systems on a global scale. II Kurzfassung ________________________________________________________________________ KURZFASSUNG Der Schwerpunkt dieser Doktorarbeit liegt auf der Untersuchung von unterschiedlichen Mikrobengemeinschaften, die an der anaeroben Oxidation von Methan (AOM) beteiligt sind mit Hilfe von Lipidanalysen. Die Zusammensetzung von apolaren und intakten polaren Lipiden (IPLs) wurde an einer breitgefächerten Auswahl von methangeladenen Systemen analysiert, die durch verschiedene Umweltfaktoren und anaerobische methanotrophische Konsortien charakterisiert sind. Außerdem wurde ein Experiment konzipiert, um die Stabilität von bakteriellen und von Archaeen stammenden IPLs in marinen Sedimenten zu untersuchen. Die drei phylogenetisch unterschiedlichen Cluster von Euryarchaeen namens ANME-1, -2 und -3, die oft zusammen mit sulfatreduzierenden Bakterien der Gruppe Desulfosarcina/Desulfococcus (‘‘ANME-1/DSS und -2/DSS Aggregate”) oder Desulfobulbus spp (‘‘ANME-3/DBB Aggregate”) beobachtet worden sind, konnten eindeutig anhand der Zusammensetzung ihrer IPLs unterschieden werden, aber nicht durch ihre apolaren Lipide. Charakteristisch für ANME-1/DSS sind Glyceroldialkylglyceroltetraether (GDGT) mit sowohl glykosidischen, phospho und gemischten Kopfgruppen, wohingegen diagnostische IPLs für ANME-2/DSS Archaeole mit sowohl glycosidischen als auch phospho Kopfgruppen waren. Im Gegensatz dazu zeigten ANME-3/DBB weder glykosidische Archaeole noch GDGT-basierte IPLs, aber dafür eine zu ANME-2/DSS sehr ähnliche Zusammensetzung der Phosphoarchaeole. Der größte Unterschied von ANME-3/DBB waren die bakteriellen IPLs phosphatidyl-(N)- methylethanolamine (PME) und phosphatidyl-(N,N)-dimethylethanolamine (PDME). Andere bakterielle IPLs, die hauptsächlich in ANME-2/DSS dominierten Karbonatmatten gefunden wurden waren IPLs ohne phosphatbasierende Kopfgruppe wie Ornithinlipide, Surfactin und Betainlipide, letztere mit ungeraden Fettsäureketten. Im Gegensatz dazu hatten Lipide mit phosphatbasierenden Kopfgruppen einen höheren Anteil in sedimentären Umgebungen. Der hohe Anteil von glykosidischen Archaeenlipiden und bakteriellen IPLs ohne phosphatbasierende Kopfgruppen in Karbonatmatten kann durch die Adsorption von Phosphat an Kalziumcarbonat erklärt werden. III Kurzfassung ________________________________________________________________________ Zusätzlich zu den allgemeinen Unterschieden der IPL Zusammensetzung der drei AOM-Gemeinschaften, war die Verteilung der IPLs auch mit verschiedenen Umweltfaktoren verknüpft, was die Charakterisierung deren unterschiedlichen Lebensräume ermöglicht. ANME-1/DSS dominiert Umgebungen mit hoher Temperatur und niedrigem Sauerstoffgehalt im Bodenwasser. Für ANME-2/DSS Systeme war es möglich zwischen Karbonatriffen und Sedimenten zu unterscheiden, wobei Erstere durch niedrige Temperaturen, hohen Sauerstoffgehalt im Bodenwasser und hohe Methan- und Sulfatkonzentrationen charakterisiert sind, während Letztere mit hohen Sulfatreduktionraten verbunden waren. ANME-3/DBB zeigte ähnliche Umweltcharakteristika wie ANME-2/DSS. Zusätzlich wurde die Degradation von bakteriellen und von Archaeen stammenden IPLs in marinen Sedimenten untersucht. Nach Inkubation für 465 Tage unter sterilen Bedingungen bei 5°C wurde ein Abbau von 80% des Archaeen- und ~50% des Bakterienlipids

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    178 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us