Spectrum and Pseudospectrum of a Tensor

Spectrum and Pseudospectrum of a Tensor

Spectrum and Pseudospectrum of a Tensor Lek-Heng Lim University of California, Berkeley July 11, 2008 L.-H. Lim (Berkeley) Spectrum and Pseudospectrum of a Tensor July 11, 2008 1 / 27 Matrix eigenvalues and eigenvectors One of the most important ideas ever invented. I R. Coifman et. al.: \Eigenvector magic: eigenvectors as an extension of Newtonian calculus." Normal/Hermitian A I Invariant subspace: Ax = λx. > > I Rayleigh quotient: x Ax=x x. > 2 I Lagrange multipliers: x Ax − λ(kxk − 1). > I Best rank-1 approximation: minkxk=1kA − λxx k. Nonnormal A −1 −1 I Pseudospectrum: σ"(A) = fλ 2 C j k(A − λI ) k > " g. ∗ I Numerical range: W (A) = fx Ax 2 C j kxk = 1g. ∗ I Irreducible representations of C (A) with natural Borel structure. ∗ I Primitive ideals of C (A) with hull-kernel topology. How can one define these for tensors? L.-H. Lim (Berkeley) Spectrum and Pseudospectrum of a Tensor July 11, 2008 2 / 27 DARPA mathematical challenge eight One of the twenty three mathematical challenges announced at DARPA Tech 2007. Problem Beyond convex optimization: can linear algebra be replaced by algebraic geometry in a systematic way? Algebraic geometry in a slogan: polynomials are to algebraic geometry what matrices are to linear algebra. Polynomial f 2 R[x1;:::; xn] of degree d can be expressed as > > f (x) = a0 + a1 x + x A2x + A3(x; x; x) + ··· + Ad (x;:::; x): n n×n n×n×n n×···×n a0 2 R; a1 2 R ; A2 2 R ; A3 2 R ;:::; Ad 2 R . Numerical linear algebra: d = 2. Numerical multilinear algebra: d > 2. L.-H. Lim (Berkeley) Spectrum and Pseudospectrum of a Tensor July 11, 2008 3 / 27 Hypermatrices Totally ordered finite sets: [n] = f1 < 2 < ··· < ng, n 2 N. Vector or n-tuple f :[n] ! R: > n If f (i) = ai , then f is represented by a = [a1;:::; an] 2 R . Matrix f :[m] × [n] ! R: m;n m×n If f (i; j) = aij , then f is represented by A = [aij ]i;j=1 2 R . Hypermatrix (order 3) f :[l] × [m] × [n] ! R: l;m;n l×m×n If f (i; j; k) = aijk , then f is represented by A = aijk i;j;k=1 2 R . J K X [n] [m]×[n] [l]×[m]×[n] Normally R = ff : X ! Rg. Ought to be R ; R ; R . L.-H. Lim (Berkeley) Spectrum and Pseudospectrum of a Tensor July 11, 2008 4 / 27 Hypermatrices and tensors Up to choice of bases n a 2 R can represent a vector in V (contravariant) or a linear functional in V ∗ (covariant). m×n A 2 R can represent a bilinear form V × W ! R (contravariant), ∗ ∗ a bilinear form V × W ! R (covariant), or a linear operator V ! W (mixed). l×m×n A 2 R can represent trilinear form U × V × W ! R (contravariant), bilinear operators V × W ! U (mixed), etc. A hypermatrix is the same as a tensor if 1 we give it coordinates (represent with respect to some bases); 2 we ignore covariance and contravariance. L.-H. Lim (Berkeley) Spectrum and Pseudospectrum of a Tensor July 11, 2008 5 / 27 Basic operation on a hypermatrix m×n A matrix can be multiplied on the left and right: A 2 R , p×m q×n X 2 R , Y 2 R , > p×q (X ; Y ) · A = XAY = [cαβ] 2 R where Xm;n cαβ = xαi yβj aij : i;j=1 l×m×n A hypermatrix can be multiplied on three sides: A = aijk 2 R , p×l q×m r×n J K X 2 R , Y 2 R , Z 2 R , p×q×r (X ; Y ; Z) ·A = cαβγ 2 R J K where Xl;m;n cαβγ = xαi yβj zγk aijk : i;j;k=1 L.-H. Lim (Berkeley) Spectrum and Pseudospectrum of a Tensor July 11, 2008 6 / 27 Numerical range of a tensor Covariant version: A· (X >; Y >; Z >) := (X ; Y ; Z) ·A: Gives convenient notations for multilinear functionals and multilinear l m n operators. For x 2 R ; y 2 R ; z 2 R , Xl;m;n A(x; y; z) := A· (x; y; z) = aijk xi yj zk ; i;j;k=1 Xm;n A(I ; y; z) := A· (I ; y; z) = aijk yj zk : j;k=1 n×n Numerical range of square matrix A 2 C , ∗ ∗ W (A) = fx Ax 2 C j kxk2 = 1g = fA(x; x ) 2 C j kxk2 = 1g: n×···×n Plausible generalization to cubical hypermatrix A 2 C , ( fA(x; x∗;:::; x) 2 j kxk = 1g odd order; W (A) = C k ∗ ∗ fA(x; x ;:::; x ) 2 C j kxkk = 1g even order: L.-H. Lim (Berkeley) Spectrum and Pseudospectrum of a Tensor July 11, 2008 7 / 27 Symmetric hypermatrices n×n×n Cubical hypermatrix aijk 2 R is symmetric if J K aijk = aikj = ajik = ajki = akij = akji : Invariant under all permutations σ 2 Sk on indices. k n S (R ) denotes set of all order-k symmetric hypermatrices. Example Higher order derivatives of multivariate functions. Example Moments of a random vector x = (X1;:::; Xn): Z Z n n mk (x) = E(xi1 xi2 ··· xik ) = ··· xi1 xi2 ··· xik dµ(xi1 ) ··· dµ(xik ) : i1;:::;ik =1 i1;:::;ik =1 L.-H. Lim (Berkeley) Spectrum and Pseudospectrum of a Tensor July 11, 2008 8 / 27 Symmetric hypermatrices Example Cumulants of a random vector x = (X1;:::; Xn): 2 3n X p−1 Q Q κk (x) = 4 (−1) (p − 1)!E xi ··· E xi 5 : i2A1 i2Ap A1t···tAp =fi1;:::;ik g i1;:::;ik =1 For n = 1, κk (x) for k = 1; 2; 3; 4 are the expectation, variance, skewness, and kurtosis. Important in Independent Component Analysis (ICA). L.-H. Lim (Berkeley) Spectrum and Pseudospectrum of a Tensor July 11, 2008 9 / 27 Multilinear spectral theory n×n×n Let A 2 R (easier if A symmetric). 1 How should one define its eigenvalues and eigenvectors? 2 What is a decomposition that generalizes the eigenvalue decomposition of a matrix? l×m×n Let A 2 R 1 How should one define its singualr values and singular vectors? 2 What is a decomposition that generalizes the singular value decomposition of a matrix? Somewhat surprising: (1) and (2) have different answers. L.-H. Lim (Berkeley) Spectrum and Pseudospectrum of a Tensor July 11, 2008 10 / 27 Tensor ranks (Hitchcock, 1927) m×n Matrix rank. A 2 R . rank(A) = dim(span fA ;:::; A g) (column rank) R •1 •n = dim(span fA ;:::; A g) (row rank) R 1• m• Pr T = minfr j A = i=1ui vi g (outer product rank): Multilinear rank. A 2 l×m×n. rank (A) = (r (A); r (A); r (A)), R 1 2 3 r (A) = dim(span fA ;:::; A g) 1 R 1•• l•• r (A) = dim(span fA ;:::; A g) 2 R •1• •m• r (A) = dim(span fA ;:::; A g) 3 R ••1 ••n l×m×n Outer product rank. A 2 R . Pr rank⊗(A) = minfr j A = i=1ui ⊗ vi ⊗ wi g l;m;n where u ⊗ v ⊗ w : = ui vj wk i;j;k=1. J K L.-H. Lim (Berkeley) Spectrum and Pseudospectrum of a Tensor July 11, 2008 11 / 27 Matrix EVD and SVD Rank revealing decompositions. 2 n Symmetric eigenvalue decomposition of A 2 S (R ), > Xr A = V ΛV = λi vi ⊗ vi ; i=1 where rank(A) = r, V 2 O(n) eigenvectors, Λ eigenvalues. m×n Singular value decomposition of A 2 R , > Xr A = UΣV = σi ui ⊗ vi i=1 where rank(A) = r, U 2 O(m) left singular vectors, V 2 O(n) right singular vectors, Σ singular values. L.-H. Lim (Berkeley) Spectrum and Pseudospectrum of a Tensor July 11, 2008 12 / 27 One plausible EVD and SVD for hypermatrices Rank revealing decompositions associated with the outer product rank. 3 n Symmetric outer product decomposition of A 2 S (R ), Xr A = λi vi ⊗ vi ⊗ vi i=1 where rankS(A) = r, vi unit vector, λi 2 R. l×m×n Outer product decomposition of A 2 R , Xr A = σi ui ⊗ vi ⊗ wi i=1 l m n where rank⊗(A) = r, ui 2 R ; vi 2 R ; wi 2 R unit vectors, σi 2 R. L.-H. Lim (Berkeley) Spectrum and Pseudospectrum of a Tensor July 11, 2008 13 / 27 Another plausible EVD and SVD for hypermatrices Rank revealing decompositions associated with the multilinear rank. l×m×n Singular value decomposition of A 2 R , A = (U; V ; W ) ·C where rank (A) = (r ; r ; r ), U 2 l×r1 , V 2 m×r2 , W 2 n×r3 1 2 3 R R R r ×r ×r have orthonormal columns and C 2 R 1 2 3 . 3 n Symmetric eigenvalue decomposition of A 2 S (R ), A = (U; U; U) ·C where rank (A) = (r; r; r), U 2 n×r has orthonormal columns and R 3 r C 2 S (R ). L.-H. Lim (Berkeley) Spectrum and Pseudospectrum of a Tensor July 11, 2008 14 / 27 Variational approach to eigenvalues/vectors m×n A 2 R symmetric. Eigenvalues and eigenvectors are critical values and critical points of > 2 x Ax=kxk2: Equivalently, critical values/points of x>Ax constrained to unit sphere. Lagrangian: > 2 L(x; λ) = x Ax − λ(kxk2 − 1): n Vanishing of rL at critical (xc ; λc ) 2 R × R yields familiar Axc = λc xc : L.-H. Lim (Berkeley) Spectrum and Pseudospectrum of a Tensor July 11, 2008 15 / 27 Variational approach to singular values/vectors m×n A 2 R .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    27 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us