Neurophysiology and Information

Neurophysiology and Information

Neurophysiology and Information Christopher Fiorillo BiS 527, Spring 2010 042 350 4326, [email protected] Part 4: Synaptic Transmission Reading: Bear, Connors, and Paradiso Chapter 5 Or any other neuroscience textbook. A Single Neuron with Synapses in Yellow Synapses Are Physical Contacts between Neurons that Enable Fast Transmission of Information • Types of Synaptic Contacts – Axodendritic: Axon to dendrite – Axosomatic: Axon to cell body – Axoaxonic: Axon to axon – Dendrodendritic: Dendrite to dendrite Two Types of Synaptic Transmission • Chemical Transmission – 1921- Otto Loewi • Electrical Transmission – 1959- Furshpan and Potter • There was a long-lasting debate about whether transmission was chemical or electrical. Both occur, but chemical transmission is much more common. Direction of Information Flow • Information usually flows in one direction – First neuron = Presynaptic neuron – Target cell = Postsynaptic neuron Postsynaptic neuron Presynaptic neuron Electrical Synapses Are Composed of Gap Junctions • Gap junction are large channels – Large enough (1-2 nm) to allow all ions plus other small molecules to pass – A Connexon spans the membrane - formed by six connexin proteins • Cells are said to be “electrically coupled” – Flow of ions from cytoplasm to cytoplasm Electrical Synapses • Very fast transmission – Chemical transmission has a delay • Postsynaptic potentials (PSPs) have the same form as the presynaptic potential, but are smaller • Most electrical synapses are bidirectional, but some are unidirectional A Chemical Synapse • The synaptic cleft is a 20-50 nm gap between the presynaptic terminal and the postsynpatic membrane • Neurotransmitter is released into the cleft and activates postsynaptic receptors Electron Micrograph of a Chemical Synapse • Synaptic Vesicles – Made of phospholipid membrane – 50 nm in diameter – Filled with molecules of neurotransmitter • Dense-core Vesicles – Contains peptide neurotransmitters • Vesicles release neurotransmitter when they fuse with the presynaptic membrane Two Synaptic Morphologies • CNS Synapses (Examples) – Gray’s Type I: Asymmetrical, usually excitatory – Gray’s Type II: Symmetrical, usually inhibitory Synapses Vary in Size and Strength • Larger synapses allow the presynaptic neuron to have a larger and more reliable effect on the postsynaptic neuron • Neurotransmitter Synthesis and Storage – Small neurotransmitters (amines, amino acids) • Synthesized in vesicles within terminal – Peptides • Synthesized within soma and transported to terminal • Basic Steps of Chemical Synaptic Transmission – Action potential invades synaptic terminal – Depolarization-activated Ca2+ channels open – Ca2+ triggers vesicles to fuse into membrane of presynaptic terminal (exocytosis) – Neurotransmitter spills into synaptic cleft – Binds to postsynaptic receptors – Biochemical/Electrical response elicited in postsynaptic cell – Removal of neurotransmitter from synaptic cleft – New vesicles formed by endocytosis – Vesicles are filled with neurotransmitter and prepared for release Removal of Neurotransmitter from the Synaptic Cleft • Removal of neurotransmitter is important in order to limit the duration of postsynaptic stimulation. This enables high frequencies of information transmission • Three Mechanisms – Diffusion – Reuptake: Transporters bind neurotransmitter and transport it to inside of presynaptic terminal • This is the most important mechanism for removing neurotransmitters • Cocaine and Prozac (fluoxetine) block reuptake of dopamine and serotonin – Enzymatic destruction in synaptic cleft • Acetylcholineesterase eliminates acetylcholine. It is the only example of this method. Neurotransmitter Release is Quantal • A action potential causes the release of a discrete number of vesicles (or quanta) – Neuromuscular junction: About 200 synaptic vesicles, EPSP of 40mV or more – CNS synapse: Single vesicle, EPSP of few tenths of a millivolt • Each vesicle contains about the same amount of neurotransmitter – Quantal content (the amount of transmitter per vesicle) is not a physiologically important variable • Spontaneous release of a single vesicle causes a miniature postsynaptic potential (current) – Often called a “mini” The Neuromuscular Junction • Studies of NMJ established principles of synaptic transmission • Synapses between neurons are very similar to NMJ Miniature Postsynaptic Currents Are Caused by Release of a Single Vesicle • “Minis” (mEPSCs and mIPSCs) are caused by spontaneous release of a single vesicle in the absence of a presynaptic action potential • Minis can be calcium-dependent or independent • Time course of mPSCs are identical to PSCs Glutamate EPSC • ~3 ms for EPSC • ~30 ms for IPSC • Amplitude of mPSC depends on postysynaptic receptors • vesicles all contain the same amount of transmitter, which can saturate postsynaptic receptors • Frequency of mPSCs depends on presynaptic factors • At most synapses, < 0.01 mPSC / second • At some synapses, > 0.1 mPSC / second Release Probability • Not every action potential evokes vesicle release • Release probability (Pr) given action potential • Some synapses release multiple vesicles, but most release just 0 or 1 vesicle • Pr depends primarily on calcium concentration in terminal’s cytosol, which P varies from depends on: r – Presence or absence of an action potential one synapse to another. A – Recent history of action potentials typical value is – Activation of neurotransmitter receptors on 0.3. synaptic terminal Paired-Pulse Depression and Facilitation • PPD and PPF are universal features of synapses. • Some synapses show PPD, some show PPF, and some show both – All synapses may have multiple mechanisms mediating both depression and facilitation • PPD and PPF are caused primarily by a decrease or increase, respectively, in vesicle release probability • Electrical stimuli (each lasting about 0.2 ms) are applied to a brain slice maintained in vitro. This evokes postsynaptic potentials (or currents, if measured in voltage clamp). – Excitatory Postsynaptic Potential (Current): EPSP (EPSC) – Inhibitory Postsynaptic Potential (Current): IPSP (IPSC) • Each stimulus evokes action potentials in many axons, and it therefore causes vesicle release from many terminals – A PSP (PSC) is caused by release of multiple vesicles (quanta) • But if a low stimulation current is used, it is possible to stimulate only a single axon, and that axon may have only one release site. In this case, some stimuli may not release any vesicles. • The amplitude of a PSP (PSC) depends on the release probability at stimulated synapses Presynaptic [Ca2+] at PF synapse PPD and PPF at 3 synapses. 10 stimuli at 50 Hz (20 ms intervals) Causes of Synaptic Depression and Facilitation • The most common cause of facilitation is an increased calcium concentration – This is due primarily to the fact that calcium is cleared slowly after an action potential • The most common cause of depression is a loss of “docked” (releasable) vesicles – Most vesicles in the terminal are “undocked,” meaning that they are not close to the membrane and bound to the vesicle-release machinery – There may be just one docked vesicle. Once it is released, it takes time for another vesicle to be docked and ready to release. – The rate of recovery from depression (docing of vesicles) is increased by calcium • There are many ways in which release probability might be modified – Changes in membrane voltage – Changes in the properties of ion channels, particularly calcium channels, that are activated during the action potential – Modification of proteins involved in vesicle release • There are probably multiple depressing and facilitating processes happening simultaneously at each synapse. Presynaptic [Ca2+] at PF synapse PPD and PPF at 3 synapses. 10 stimuli at 50 Hz (20 ms intervals) Modulation of Release Probability by Presynaptic Neurotransmitter Receptors Presynaptic [Ca2+] at PF synapse Suppression of glutamate EPSCs by is suppressed by cannabinoid adenosine receptors receptor activation • Neurotransmitter receptors on presynaptic terminals act to augment or suppress release probability – These receptors therefore alter PPD or PPF • Many receptors suppress vesicle release, including “autoreceptors” – Suppression often occurs through inhibition of Ca2+ channels and activation of K+ channels How can we know whether a change in amplitude of a synaptic potential is pre- or postsynaptic? Suppression of glutamate EPSCs by adenosine receptors • Two Easy Tests: – Paired-pulse ratio (PPF or PPD) • A change suggests a presynaptic effect • No change suggests a postsynaptic effect – Minis • A change in frequency suggests a presynaptic effect • A change in amplitude suggests a postsynaptic effect • These tests are not definitive; there are exceptions to these rules Analogies between Presynaptic Terminals and Somatodendritic Compartment Synaptic Terminal Somatodendritic Compartment 1. Output: quantal vesicle release, 1. Output: All-or-none action potential usually 0 or 1 2. Integration medium: membrane 2. Integration medium: [Ca2+] potential 3. Imaginary quantity: “Release 3. Imaginary quantity: “Instantaneous Probability” Firing Rate” 4. Spontaneous release 4. Spontaneous action potentials 5. Inputs: action potential, synaptic 5. Inputs: synaptic neurotransmission, neurotransmission, voltage- voltage-regulated ion channels regulated ion channels Synaptic Integration • Synaptic Integration: The process by which multiple synaptic potentials sum together within one postsynaptic neuron • This occurs in the

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    28 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us