Spacelike Singularities and Hidden Symmetries of Gravity

Spacelike Singularities and Hidden Symmetries of Gravity

Spacelike Singularities and Hidden Symmetries of Gravity Marc Henneaux Physique Th´eoriqueet Math´ematique Universit´eLibre de Bruxelles & International Solvay Institutes Boulevard du Triomphe, ULB { C.P. 231 B-1050 Bruxelles, Belgium email: [email protected] Daniel Persson Physique Th´eoriqueet Math´ematique Universit´eLibre de Bruxelles & International Solvay Institutes Boulevard du Triomphe, ULB { C.P. 231 B-1050 Bruxelles, Belgium email: [email protected] Philippe Spindel Service de M´ecaniqueet Gravitation Universit´ede Mons-Hainaut, Acad´emieWallonie-Bruxelles Avenue du Champ de Mars 6, B-7000 Mons, Belgium email: [email protected] Abstract We review the intimate connection between (super-)gravity close to a spacelike singularity (the \BKL-limit") and the theory of Lorentzian Kac{Moody algebras. We show that in this limit the gravitational theory can be reformulated in terms of billiard motion in a region of hyperbolic space, revealing that the dynamics is completely determined by a (possibly infinite) sequence of reflections, which are elements of a Lorentzian Coxeter group. Such Coxeter arXiv:0710.1818v2 [hep-th] 28 Apr 2008 groups are the Weyl groups of infinite-dimensional Kac{Moody algebras, suggesting that these algebras yield symmetries of gravitational theories. Our presentation is aimed to be a self- contained and comprehensive treatment of the subject, with all the relevant mathematical background material introduced and explained in detail. We also review attempts at making the infinite-dimensional symmetries manifest, through the construction of a geodesic sigma model based on a Lorentzian Kac{Moody algebra. An explicit example is provided for the case of the hyperbolic algebra E10, which is conjectured to be an underlying symmetry of M-theory. Illustrations of this conjecture are also discussed in the context of cosmological solutions to eleven-dimensional supergravity. 1 Contents 1 Introduction 7 1.1 Cosmological billiards and hidden symmetries of gravity . 7 1.2 Outline of the paper . 8 2 The BKL Phenomenon 10 2.1 The general action . 10 2.2 Hamiltonian description . 10 2.2.1 Action in canonical form . 11 2.2.2 Iwasawa change of variables . 12 2.3 Decoupling of spatial points close to a spacelike singularity . 14 2.3.1 Spatially homogeneous models . 15 2.3.2 The ultralocal Hamiltonian . 16 2.4 Dynamics as a billiard in hyperbolic space . 16 2.5 Rules for deriving the wall forms from the Lagrangian { Summary . 19 2.6 More on the free motion: The Kasner solution . 20 2.7 Chaos and billiard volume . 20 2.8 A note on the constraints . 21 2.9 On the validity of the BKL conjecture { A status report . 21 3 Hyperbolic Coxeter Groups 23 3.1 Preliminary example: The BKL billiard (vacuum D = 4 gravity) . 23 3.1.1 Billiard reflections . 23 3.1.2 On the group P GL(2; Z)............................. 25 3.2 Coxeter groups { The general theory . 26 3.2.1 Examples . 26 3.2.2 Definition . 29 3.2.3 The length function . 30 3.2.4 Geometric realization . 31 3.2.5 Positive and negative roots . 32 3.2.6 Fundamental domain . 33 3.3 Finite Coxeter groups . 34 3.4 Affine Coxeter groups . 34 3.5 Lorentzian and hyperbolic Coxeter groups . 37 3.6 Crystallographic Coxeter groups . 43 4 Lorentzian Kac{Moody Algebras 47 4.1 Definitions . 47 4.2 Roots . 49 4.3 The Chevalley involution . 51 4.4 Three examples . 51 4.5 The affine case . 53 4.6 The invariant bilinear form . 53 4.6.1 Definition . 53 4.6.2 Real and imaginary roots . 56 4.6.3 Fundamental weights and the Weyl vector . 57 4.6.4 The generalized Casimir operator . 57 4.7 The Weyl group . 58 4.8 Hyperbolic Kac{Moody algebras . 61 4.8.1 The fundamental domain F ........................... 62 2 4.8.2 Roots and the root lattice . 62 4.8.3 Examples . 62 4.9 Overextensions of finite-dimensional Lie algebras . 64 4.9.1 Untwisted overextensions . 65 4.9.2 Root systems in Euclidean space . 66 4.9.3 Twisted overextensions . 67 4.9.4 Algebras of Gaberdiel{Olive{West type . 68 4.10 Regular subalgebras of Kac{Moody algebras . 69 4.10.1 Definitions . 69 4.10.2 Examples { Regular subalgebras of E10 .................... 70 4.10.3 Further properties . 72 5 Kac{Moody Billiards I { The Case of Split Real Forms 74 5.1 More on Coxeter billiards . 74 5.1.1 The Coxeter billiard of pure gravity in D spacetime dimensions . 74 5.1.2 The Coxeter billiard for the coupled gravity-3-Form system . 75 5.2 Dynamics in the Cartan subalgebra . 77 5.2.1 Billiard dynamics in the Cartan subalgebra . 78 5.2.2 The fundamental Weyl chamber and the billiard table . 80 5.2.3 Hyperbolicity implies chaos . 80 5.3 Understanding the emerging Kac{Moody algebra . 81 5.3.1 Invariance under toroidal dimensional reduction . 82 5.3.2 Iwasawa decomposition for split real forms . 83 5.3.3 Starting at the bottom { Overextensions of finite-dimensional Lie algebras . 84 5.4 Models associated with split real forms . 86 6 Finite-Dimensional Real Lie Algebras 88 6.1 Definitions . 88 6.2 A preliminary example: sl(2; C)............................. 89 6.2.1 Real forms of sl(2; C) .............................. 89 6.2.2 Cartan subalgebras . 90 6.2.3 The Killing form . 90 6.2.4 The compact real form su(2) . 91 6.2.5 su(2) and sl(2; R) compared and contrasted { The Cartan involution . 91 6.2.6 Concluding remarks . 92 6.3 The compact and split real forms of a semi-simple Lie algebra . 93 6.4 Classical decompositions . 95 6.4.1 Real forms and conjugations . 95 6.4.2 The compact real form aligned with a given real form . 95 6.4.3 Cartan involution and Cartan decomposition . 95 6.4.4 Restricted roots . 97 6.4.5 Iwasawa and KAK decompositions . 98 6.4.6 θ-stable Cartan subalgebras . 98 6.4.7 Real roots { Compact and non-compact imaginary roots . 99 6.4.8 Jumps between Cartan subalgebras { Cayley transformations . 100 6.5 Vogan diagrams . 101 6.5.1 Illustration { The sl(5; C) case . 101 6.5.2 The Borel and de Siebenthal theorem . 105 6.5.3 Cayley transformations in su(3; 2) . 105 6.5.4 Reconstruction . 107 3 6.5.5 Illustrations: sl(4; R) versus sl(2; H) . 107 6.5.6 A pictorial summary { All real simple Lie algebras (Vogan diagrams) . 108 6.6 Tits{Satake diagrams . 116 6.6.1 Example 1: su(3; 2) . 116 6.6.2 Example 2: su(4; 1) . 118 6.6.3 Tits{Satake diagrams: Definition . 120 6.6.4 Formal considerations . 120 6.6.5 Illustration: F4 .................................. 121 6.6.6 Some more formal considerations . 122 6.7 The real semi-simple algebras so(k; l) . 124 6.7.1 Dimensions l = 2 q + 1 < k = 2 p . 125 6.7.2 Dimensions l = 2 q + 1 > k = 2 p . 126 6.7.3 Dimensions l = 2 q; k = 2 p . 126 6.8 Summary { Tits{Satake diagrams for non-compact real forms . 127 7 Kac{Moody Billiards II { The Case of Non-Split Real Forms 134 7.1 The restricted Weyl group and the maximal split \subalgebra" . 134 7.2 \Split symmetry controls chaos" . 136 7.2.1 (BC)1 and N = 2, D = 4 pure supergravity . 136 7.2.2 Heterotic supergravity and so(8; 24) . 138 7.3 Models associated with non-split real forms . ..

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    228 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us