Sulfur Recovery

Sulfur Recovery

<p><strong>Sulfur Recovery </strong></p><p>Chapter 16 <br>Based on presentation by Prof. Art Kidnay </p><p><strong>Plant Block Schematic </strong></p><p>Adapted from Figure 7.1, </p><p><em>Fundamentals of Natural Gas Processing</em>, 2<sup style="top: -0.28em;">nd </sup>ed. </p><p>Kidnay, Parrish, &amp; McCartney </p><p>Updated: January 4, 2019 Copyright © 2019 John Jechura ([email protected]) <br>2</p><p><strong>Topics </strong></p><p>Introduction Properties of sulfur Sulfur recovery processes </p><p>▪ Claus Process ▪ Claus Tail Gas Cleanup </p><p>Sulfur storage Safety and environmental considerations </p><p>Updated: January 4, 2019 Copyright © 2019 John Jechura ([email protected]) <br>3</p><p><strong>Introduction &amp; </strong></p><p><strong>Properties of Sulfur </strong></p><p>Updated: January 4, 2019 Copyright © 2017 John Jechura ([email protected]) </p><p><strong>Sulfur Crystals </strong></p><p><a href="/goto?url=http://www.irocks.com/minerals/specimen/34046" target="_blank">http://www.irocks.com/minerals/specimen/34046 </a><a href="/goto?url=http://www.mccullagh.org/image/10d-5/sulfur.html" target="_blank">http://www.mccullagh.org/image/10d-5/sulfur.html </a></p><p>Updated: January 4, 2019 Copyright © 2019 John Jechura ([email protected]) <br>5</p><p><strong>Molten Sulfur </strong></p><p><a href="/goto?url=http://www.kamgroupltd.com/En/Post/7/Basic-info-on-elemental-Sulfur(HSE)" target="_blank">http://www.kamgroupltd.com/En/Post/7/Basic-info-on-elemental-Sulfur(HSE) </a></p><p>Updated: January 4, 2019 Copyright © 2019 John Jechura ([email protected]) <br>6</p><p><strong>World Consumption of Sulfur </strong></p><p>Primary usage of sulfur to make sulfuric acid </p><p>(90 – 95%) </p><p>▪ Other major uses are rubber processing, cosmetics, &amp; pharmaceutical </p><p>applications </p><p>China primary market </p><p>Ref: <a href="/goto?url=https://ihsmarkit.com/products/sulfur-chemical-economics-handbook.html" target="_blank">https://ihsmarkit.com/products/sulfur-chemical-economics-handbook.html </a></p><p>Report published December 2017 </p><p>Updated: January 4, 2019 Copyright © 2019 John Jechura ([email protected]) <br>7</p><p><strong>Sulfur Usage &amp; Prices </strong></p><p>Natural gas &amp; petroleum </p><p>production accounts for the </p><p>majority of sulfur production Primary consumption is agriculture &amp; industry </p><p>▪ 65% for farm fertilizer: sulfur → sulfuric acid → phosphoric acid → fertilizer </p><p>$50 per ton essentially disposal cost </p><p>▪ Chinese demand caused runup in 2007-2008 </p><p>Ref: <a href="/goto?url=http://ictulsa.com/energy/" target="_blank">http://ictulsa.com/energy/ </a></p><p>Updated December 24, 2018 </p><p>“Cleaning up their act”, Gordon Cope, </p><p>Hydrocarbon Engineering, pp 24-27, March 2011 </p><p>Updated: January 4, 2019 Copyright © 2019 John Jechura ([email protected]) <br>8</p><p><strong>U.S. sulfur production </strong></p><p>Updated: January 4, 2019 Copyright © 2019 John Jechura ([email protected]) <br>9</p><p><strong>Sulfur Chemical Structure </strong></p><p>Pure sulfur exists as S<sub style="top: 0.49em;">X </sub>where X = 1 to 8 </p><p>▪ The dominant species are S<sub style="top: 0.41em;">2</sub>, S<sub style="top: 0.41em;">6</sub>, &amp; </p><p>S<sub style="top: 0.41em;">8 </sub></p><p>May be in ring structure or open chain </p><p>Species determined by temperature </p><p>This composition greatly affects its properties! </p><p>Octasulfur, S<sub style="top: 0.28em;">8 </sub></p><p>Updated: January 4, 2019 Copyright © 2019 John Jechura ([email protected]) <br>10 </p><p><strong>Sulfur Vapor Species </strong></p><p><strong>1.0 </strong></p><p><strong>S</strong><sub style="top: 0.1776em;"><strong>8 </strong></sub></p><p><strong>0.8 </strong></p><p><strong>S</strong><sub style="top: 0.1776em;"><strong>2 </strong></sub></p><p><strong>0.6 0.4 </strong></p><p><strong>S</strong><sub style="top: 0.1769em;"><strong>6 </strong></sub></p><p><strong>0.2 0.0 </strong></p><ul style="display: flex;"><li style="flex:1"><strong>200 </strong></li><li style="flex:1"><strong>400 </strong></li><li style="flex:1"><strong>600 </strong></li><li style="flex:1"><strong>800 </strong></li><li style="flex:1"><strong>1000 </strong></li><li style="flex:1"><strong>1200 </strong></li><li style="flex:1"><strong>1400 </strong></li></ul><p></p><p><strong>Temperature, °F </strong></p><p>Updated: January 4, 2019 Copyright © 2019 John Jechura ([email protected]) <br>11 </p><p><strong>Viscosity of Molten Sulfur </strong></p><p><strong>10</strong><sup style="top: -0.6703em;"><strong>5 </strong></sup></p><p><strong>Pure Sulfur </strong></p><p><strong>10</strong><sup style="top: -0.6697em;"><strong>4 </strong></sup><strong>10</strong><sup style="top: -0.6703em;"><strong>3 </strong></sup><strong>10</strong><sup style="top: -0.6703em;"><strong>2 </strong></sup><strong>10</strong><sup style="top: -0.6697em;"><strong>1 </strong></sup><strong>10</strong><sup style="top: -0.6702em;"><strong>0 </strong></sup></p><ul style="display: flex;"><li style="flex:1"><strong>400 </strong></li><li style="flex:1"><strong>600 </strong></li></ul><p><strong>Temperature, °C </strong><br><strong>300 </strong></p><ul style="display: flex;"><li style="flex:1"><strong>500 </strong></li><li style="flex:1"><strong>700 </strong></li><li style="flex:1"><strong>800 </strong></li></ul><p></p><p>Updated: January 4, 2019 Copyright © 2019 John Jechura ([email protected]) <br>12 </p><p><strong>Viscosity of Molten Sulfur </strong></p><p><strong>10</strong><sup style="top: -0.6736em;"><strong>5 </strong></sup></p><p><strong>Pure Sulfur </strong></p><p><strong>H</strong><sub style="top: 0.1465em;"><strong>2</strong></sub><strong>S Partial Pressure, </strong></p><p><strong>10</strong><sup style="top: -0.673em;"><strong>4 </strong></sup></p><p><strong>psia </strong><br><strong>0.0015 </strong></p><p><strong>0.015 </strong></p><p><strong>10</strong><sup style="top: -0.6736em;"><strong>3 </strong></sup></p><p><strong>0.15 1.5 </strong></p><p><strong>10</strong><sup style="top: -0.6736em;"><strong>2 </strong></sup></p><p><strong>14.7 </strong></p><p><strong>10</strong><sup style="top: -0.673em;"><strong>1 </strong></sup><strong>10</strong><sup style="top: -0.6735em;"><strong>0 </strong></sup></p><ul style="display: flex;"><li style="flex:1"><strong>400 </strong></li><li style="flex:1"><strong>600 </strong></li></ul><p><strong>Temperature, °C </strong></p><ul style="display: flex;"><li style="flex:1"><strong>300 </strong></li><li style="flex:1"><strong>500 </strong></li><li style="flex:1"><strong>700 </strong></li><li style="flex:1"><strong>800 </strong></li></ul><p></p><p>Updated: January 4, 2019 Copyright © 2019 John Jechura ([email protected]) <br>13 </p><p><strong>Viscosity of liquid sulfur </strong></p><p>Updated: January 4, 2019 Copyright © 2019 John Jechura ([email protected]) <br>14 </p><p><strong>Sulfur recovery processes </strong></p><p>Updated: January 4, 2019 Copyright © 2017 John Jechura ([email protected]) </p><p><strong>Sulfur Recovery </strong></p><p>Typically a modified Claus process </p><p>▪ H<sub style="top: 0.4125em;">2</sub>S rich stream burned with 1/3 stoichiometric air.&nbsp;Hot gases are then </p><p>passed over alumina catalyst to produce free sulfur </p><ul style="display: flex;"><li style="flex:1">Combustion: </li><li style="flex:1">H<sub style="top: 0.41em;">2</sub>S + 1.5·O<sub style="top: 0.41em;">2 </sub>H<sub style="top: 0.41em;">2</sub>O + SO<sub style="top: 0.41em;">2 </sub></li></ul><p>Claus Reaction:&nbsp;2·H<sub style="top: 0.41em;">2</sub>S + SO<sub style="top: 0.41em;">2 </sub>D 2·H<sub style="top: 0.41em;">2</sub>O + 3·S </p><p>▪ Sulfur formation reaction mildly exothermic </p><p>▪ Sulfur conversion reactors kept above 400<sup style="top: -0.5em;">o</sup>F (sulfur dew point) </p><p>The Claus reaction is <strong>reversible </strong>– therefore, 100% conversion can </p><p>never be achieved </p><p>▪ Practically, Claus units are limited to about 96% recovery ▪ Tail gas units are used to provide improved conversion </p><p>Updated: January 4, 2019 Copyright © 2019 John Jechura ([email protected]) <br>16 </p><p><strong>Modified Claus Process </strong></p><p><em>Petroleum Refining Technology &amp; Economics – 5</em><sup style="top: -0.28em;"><em>th </em></sup><em>Ed. </em></p><p>by James Gary, Glenn Handwerk, &amp; Mark Kaiser, CRC Press, 2007 </p><p><strong>Converters 400 – 700</strong><sup style="top: -0.3em;"><strong>o</strong></sup><strong>F </strong><br><strong>Burner &amp; Reactor above 1800</strong><sup style="top: -0.3em;"><strong>o</strong></sup><strong>F </strong></p><p><strong>2300-2700</strong><sup style="top: -0.3em;"><strong>o</strong></sup><strong>F for NH</strong><sub style="top: 0.24em;"><strong>3 </strong></sub><strong>destruction </strong></p><p><em>GPSA Engineering Data Book</em>, 13th ed., </p><p>Fig. 22-2, 2012 </p><p>Updated: January 4, 2019 Copyright © 2019 John Jechura ([email protected]) <br>17 </p><p><strong>Temperature Regimes for the Claus Process </strong></p><p>Updated: January 4, 2019 Copyright © 2019 John Jechura ([email protected]) <br>18 </p><p><strong>Straight-through Claus Process </strong></p><p>gas reheat gas reheat </p><p>450°F </p><p>gas reheat waste heat </p><p>boiler </p><p></p><ul style="display: flex;"><li style="flex:1">420°F </li><li style="flex:1">400°F </li></ul><p></p><p>Claus #3 <br>HP steam <br>Claus #1 </p><p>590°F </p><p>Claus #2 acid </p><p>gas <br>LP </p><p></p><ul style="display: flex;"><li style="flex:1">453°F </li><li style="flex:1">300°F 407°F </li></ul><p></p><p>LP steam <br>LP </p><p>600°F <br>270°F </p><p>steam </p><p>375°F </p><p>steam 350°F </p><p>110°F 8 psig </p><p>condens condenser er </p><ul style="display: flex;"><li style="flex:1">condenser </li><li style="flex:1">condenser </li></ul><p>condenser </p><p>boiler feed air </p><p>water (BFW) <br>BFW <br>BFW </p><p>sulfur <br>BFW reaction </p><p>furnace </p><ul style="display: flex;"><li style="flex:1">sulfur </li><li style="flex:1">sulfur </li><li style="flex:1">sulfur </li></ul><p></p><p>1700 - 2400°F </p><p>tail gas </p><p>Updated: January 4, 2019 Copyright © 2019 John Jechura ([email protected]) <br>19 </p><p><strong>Equilibrium Conversion of H</strong><sub style="top: 0.66em;"><strong>2</strong></sub><strong>S to S </strong></p><p><strong>Temperature, </strong><sup style="top: -0.6896em;"><strong>o </strong></sup><strong>C </strong></p><ul style="display: flex;"><li style="flex:1"><strong>204 </strong></li><li style="flex:1"><strong>427 </strong></li><li style="flex:1"><strong>871 </strong></li><li style="flex:1"><strong>1316 </strong></li><li style="flex:1"><strong>1538 </strong></li></ul><p></p><ul style="display: flex;"><li style="flex:1"><strong>649 </strong></li><li style="flex:1"><strong>1093 </strong></li></ul><p></p><p><strong>100 </strong><br><strong>80 60 40 </strong></p><p><strong>melting point boiling point </strong></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>0</strong></li><li style="flex:1"><strong>400 </strong></li><li style="flex:1"><strong>800 </strong></li><li style="flex:1"><strong>1200 </strong></li><li style="flex:1"><strong>1600 </strong></li><li style="flex:1"><strong>2000 </strong></li><li style="flex:1"><strong>2400 </strong></li><li style="flex:1"><strong>2800 </strong></li></ul><p><strong>Temperature, °F </strong></p><p>Updated: January 4, 2019 Copyright © 2019 John Jechura ([email protected]) <br>20 </p><p><strong>Equilibrium Conversion of H</strong><sub style="top: 0.66em;"><strong>2</strong></sub><strong>S to S </strong></p><p><strong>100 </strong></p><p>Claus #3 <br>Furnace &amp; waste heat boiler <br>Claus #2 </p><ul style="display: flex;"><li style="flex:1">1700 -&nbsp;2400F </li><li style="flex:1">Claus #1 </li></ul><p></p><p><strong>80 60 40 </strong></p><p><strong>melting point boiling point </strong></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>0</strong></li><li style="flex:1"><strong>400 </strong></li><li style="flex:1"><strong>800 </strong></li><li style="flex:1"><strong>1200 </strong></li><li style="flex:1"><strong>1600 </strong></li><li style="flex:1"><strong>2000 </strong></li><li style="flex:1"><strong>2400 </strong></li><li style="flex:1"><strong>2800 </strong></li></ul><p></p><p><strong>Temperature, °F </strong></p><p>Updated: January 4, 2019 Copyright © 2019 John Jechura ([email protected]) <br>21 </p><p><strong>Hydrocarbons in the Claus Process </strong></p><p>Updated: January 4, 2019 Copyright © 2019 John Jechura ([email protected]) <br>22 </p><p><strong>Claus Process </strong></p><p>Use multiple stages to obtain highest conversion </p><p>▪ Typically three </p><p>Various flow patterns </p><p>▪ Straight-through – best, used whenever possible </p><p>▪ Split flow – best at low H<sub style="top: 0.41em;">2</sub>S feed concentrations (5 to 30 mol% H<sub style="top: 0.41em;">2</sub>S) </p><p>▪ Sulfur recycle &lt; 5% H2S ▪ Direct oxidation &lt; 5% H2S </p><p>Updated: January 4, 2019 Copyright © 2019 John Jechura ([email protected]) <br>23 </p><p><strong>Claus Process </strong></p><p>Claus unit feed usually contains H<sub style="top: 0.49em;">2</sub>S and CO<sub style="top: 0.49em;">2 </sub>High concentrations of noncombustible components (CO<sub style="top: 0.49em;">2</sub>, N<sub style="top: 0.49em;">2</sub>) </p><p>▪ Lower flame temperature ▪ Difficult to maintain stable combustion furnace flame temperatures below <br>1700<sup style="top: -0.5em;">o</sup>F </p><p>Solutions include </p><p>▪ Preheating air ▪ Preheating acid gas feed ▪ Enriching oxygen in air ▪ Using split-flow process </p><p>Updated: January 4, 2019 Copyright © 2019 John Jechura ([email protected]) <br>24 </p><p><strong>Split-flow Claus Process </strong></p><p>gas reheat gas reheat gas reheat </p><p>HP steam </p><p></p><ul style="display: flex;"><li style="flex:1">Claus #3 </li><li style="flex:1">Claus #2 </li></ul><p></p><ul style="display: flex;"><li style="flex:1">Claus #2 </li><li style="flex:1">Claus #1 </li><li style="flex:1">2/3 flow </li></ul><p></p><p>1/3 flow </p><ul style="display: flex;"><li style="flex:1">LP </li><li style="flex:1">LP </li></ul><p></p><p>steam <br>LP steam steam acid gas </p><p>condenser </p><p>BFW ccoonnddeennsseerr </p><ul style="display: flex;"><li style="flex:1">condenser </li><li style="flex:1">condenser </li><li style="flex:1">condenser </li><li style="flex:1">condenser </li></ul><p></p><p>air </p><p>boiler feed water (BFW) </p><p>BFW </p><ul style="display: flex;"><li style="flex:1">sulfur </li><li style="flex:1">sulfur </li><li style="flex:1">sulfur </li></ul><p>reaction </p><p>furnace sulfur tail gas </p><p>Updated: January 4, 2019 Copyright © 2019 John Jechura ([email protected]) <br>25 </p><p><strong>Typical Claus Configurations </strong></p><p><strong>Approximate </strong></p><p><strong>concentration of </strong><br><strong>Process variation </strong></p><p><strong>H</strong><sub style="top: 0.43em;"><strong>2</strong></sub><strong>S in feed </strong><br><strong>(mol%) </strong></p><p>55 - 100 <br>30 - 55 </p><p>15 - 30 </p><p>10 - 15 <br>5 - 10 <br>Straight-through Straight-through + acid gas and/or air preheat </p><p>Split-flow or acid gas and/or air preheat </p><p>Split-flow with acid gas and/or air preheat Split-flow with fuel added, O<sub style="top: 0.43em;">2 </sub>enrichment, or with acid gas and air preheat </p><p>Updated: January 4, 2019 Copyright © 2019 John Jechura ([email protected]) <br>26 </p><p><strong>Tail Gas Clean Up </strong></p><p>Three process categories: Direct oxidation of H<sub style="top: 0.49em;">2</sub>S to sulfur&nbsp;(Superclaus) </p><p>2 H<sub style="top: 0.49em;">2</sub>S + O<sub style="top: 0.49em;">2 </sub>→ 2 S + 2 H<sub style="top: 0.49em;">2</sub>O </p><p>Sub-dew point Claus processes&nbsp;(Cold Bed Adsorption) SO<sub style="top: 0.49em;">2 </sub>reduction and recovery of H<sub style="top: 0.49em;">2</sub>S (SCOT) </p><p>Updated: January 4, 2019 Copyright © 2019 John Jechura ([email protected]) <br>27 </p><p><strong>Claus Tail Gas Cleanup </strong></p><p>Conventional 3-stage Claus units recover 96 to 97.5% of sulfur </p><p>▪ Remainder was burned to SO<sub style="top: 0.4125em;">2 </sub>and vented </p><p>▪ Adding fourth stage results in 97 to 98.5% recovery </p><p>Regulations now require 99.8 to 99.9% recovery </p><p>Meeting regulations requires modified technology </p><p>Updated: January 4, 2019 Copyright © 2019 John Jechura ([email protected]) <br>28 </p><p><strong>Shell Claus Offgas Treating (SCOT) </strong></p><p>Four step process: </p><p>▪ Mix feed with reducing gas (H<sub style="top: 0.41em;">2 </sub>and CO) </p><p>▪ Convert all sulfur compounds to H<sub style="top: 0.41em;">2</sub>S ▪ Cool the reactor gas ▪ Strip H<sub style="top: 0.41em;">2</sub>S using amine </p><p><strong>To Stack </strong><br><strong>Claus Tail Gas </strong><br><strong>H</strong><sub style="top: 0.0862em;"><strong>2</strong></sub><strong>S Recycle </strong></p><p><strong>Reducing Gas </strong><br><strong>Catalytic Reactor </strong><br><strong>Air </strong></p><p><strong>Furnace </strong><br><strong>Fuel </strong></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>Low Pressure </strong></li><li style="flex:1"><strong>Low Pressure </strong></li></ul><p><strong>Steam </strong><br><strong>H</strong><sub style="top: 0.0859em;"><strong>2</strong></sub><strong>O </strong><br><strong>Steam Reboiler </strong></p><p>Updated: January 4, 2019 Copyright © 2019 John Jechura ([email protected]) <br>29 </p><p><strong>SCOT Process </strong></p><p><strong>To Stack </strong><br><strong>Claus Tail Gas </strong></p><p><strong>Reducing Gas </strong><br><strong>H</strong><sub style="top: 0.0862em;"><strong>2</strong></sub><strong>S Recycle </strong><br><strong>Catalytic Reactor </strong><br><strong>Air </strong></p><p><strong>Furnace </strong><br><strong>Fuel </strong></p><p><strong>Low Pressure </strong><br><strong>Steam </strong><br><strong>Low Pressure Steam Reboiler </strong><br><strong>H</strong><sub style="top: 0.0858em;"><strong>2</strong></sub><strong>O </strong></p><p>Mix Claus tail </p><p>gas with H<sub style="top: 0.32em;">2 </sub>and sulfur compounds to H<sub style="top: 0.32em;">2</sub>S </p><p>CO and heat in&nbsp;Reactions: </p><p>Catalytically convert&nbsp;all </p><p>Cool reactor gas </p><p>Strip H<sub style="top: 0.32em;">2</sub>S from gas &amp; recycle to </p><p>(exiting at ~570<sup style="top: -0.4em;">o</sup>F Claus in waste heat </p><p>Typically use MDEA – can get to </p><p>SO<sub style="top: 0.2817em;">2 </sub>+ 3H<sub style="top: 0.2817em;">2 </sub>→ H<sub style="top: 0.2817em;">2</sub>S + 2H<sub style="top: 0.2817em;">2</sub>O </p><p>S<sub style="top: 0.28em;">2 </sub>+ 2H<sub style="top: 0.28em;">2 </sub>→ 2H<sub style="top: 0.28em;">2</sub>S COS + H<sub style="top: 0.28em;">2</sub>O → CO<sub style="top: 0.28em;">2</sub>+ H<sub style="top: 0.28em;">2</sub>S CS<sub style="top: 0.28em;">2 </sub>+ 2H<sub style="top: 0.28em;">2</sub>O → CO<sub style="top: 0.28em;">2 </sub>+ H<sub style="top: 0.28em;">2</sub>S </p><p>inline burner </p><p>exchanger and </p><p>water wash to complete cooling. </p><p>low H<sub style="top: 0.3217em;">2</sub>S levels in Stack Gas &amp; </p><p>slip CO<sub style="top: 0.32em;">2 </sub>so it doesn’t build up in </p><p>the recycle gas </p><p>Updated: January 4, 2019 Copyright © 2019 John Jechura ([email protected]) <br>30 </p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    36 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us