
<p><strong>Sulfur Recovery </strong></p><p>Chapter 16 <br>Based on presentation by Prof. Art Kidnay </p><p><strong>Plant Block Schematic </strong></p><p>Adapted from Figure 7.1, </p><p><em>Fundamentals of Natural Gas Processing</em>, 2<sup style="top: -0.28em;">nd </sup>ed. </p><p>Kidnay, Parrish, & McCartney </p><p>Updated: January 4, 2019 Copyright © 2019 John Jechura ([email protected]) <br>2</p><p><strong>Topics </strong></p><p>Introduction Properties of sulfur Sulfur recovery processes </p><p>▪ Claus Process ▪ Claus Tail Gas Cleanup </p><p>Sulfur storage Safety and environmental considerations </p><p>Updated: January 4, 2019 Copyright © 2019 John Jechura ([email protected]) <br>3</p><p><strong>Introduction & </strong></p><p><strong>Properties of Sulfur </strong></p><p>Updated: January 4, 2019 Copyright © 2017 John Jechura ([email protected]) </p><p><strong>Sulfur Crystals </strong></p><p><a href="/goto?url=http://www.irocks.com/minerals/specimen/34046" target="_blank">http://www.irocks.com/minerals/specimen/34046 </a><a href="/goto?url=http://www.mccullagh.org/image/10d-5/sulfur.html" target="_blank">http://www.mccullagh.org/image/10d-5/sulfur.html </a></p><p>Updated: January 4, 2019 Copyright © 2019 John Jechura ([email protected]) <br>5</p><p><strong>Molten Sulfur </strong></p><p><a href="/goto?url=http://www.kamgroupltd.com/En/Post/7/Basic-info-on-elemental-Sulfur(HSE)" target="_blank">http://www.kamgroupltd.com/En/Post/7/Basic-info-on-elemental-Sulfur(HSE) </a></p><p>Updated: January 4, 2019 Copyright © 2019 John Jechura ([email protected]) <br>6</p><p><strong>World Consumption of Sulfur </strong></p><p>Primary usage of sulfur to make sulfuric acid </p><p>(90 – 95%) </p><p>▪ Other major uses are rubber processing, cosmetics, & pharmaceutical </p><p>applications </p><p>China primary market </p><p>Ref: <a href="/goto?url=https://ihsmarkit.com/products/sulfur-chemical-economics-handbook.html" target="_blank">https://ihsmarkit.com/products/sulfur-chemical-economics-handbook.html </a></p><p>Report published December 2017 </p><p>Updated: January 4, 2019 Copyright © 2019 John Jechura ([email protected]) <br>7</p><p><strong>Sulfur Usage & Prices </strong></p><p>Natural gas & petroleum </p><p>production accounts for the </p><p>majority of sulfur production Primary consumption is agriculture & industry </p><p>▪ 65% for farm fertilizer: sulfur → sulfuric acid → phosphoric acid → fertilizer </p><p>$50 per ton essentially disposal cost </p><p>▪ Chinese demand caused runup in 2007-2008 </p><p>Ref: <a href="/goto?url=http://ictulsa.com/energy/" target="_blank">http://ictulsa.com/energy/ </a></p><p>Updated December 24, 2018 </p><p>“Cleaning up their act”, Gordon Cope, </p><p>Hydrocarbon Engineering, pp 24-27, March 2011 </p><p>Updated: January 4, 2019 Copyright © 2019 John Jechura ([email protected]) <br>8</p><p><strong>U.S. sulfur production </strong></p><p>Updated: January 4, 2019 Copyright © 2019 John Jechura ([email protected]) <br>9</p><p><strong>Sulfur Chemical Structure </strong></p><p>Pure sulfur exists as S<sub style="top: 0.49em;">X </sub>where X = 1 to 8 </p><p>▪ The dominant species are S<sub style="top: 0.41em;">2</sub>, S<sub style="top: 0.41em;">6</sub>, & </p><p>S<sub style="top: 0.41em;">8 </sub></p><p>May be in ring structure or open chain </p><p>Species determined by temperature </p><p>This composition greatly affects its properties! </p><p>Octasulfur, S<sub style="top: 0.28em;">8 </sub></p><p>Updated: January 4, 2019 Copyright © 2019 John Jechura ([email protected]) <br>10 </p><p><strong>Sulfur Vapor Species </strong></p><p><strong>1.0 </strong></p><p><strong>S</strong><sub style="top: 0.1776em;"><strong>8 </strong></sub></p><p><strong>0.8 </strong></p><p><strong>S</strong><sub style="top: 0.1776em;"><strong>2 </strong></sub></p><p><strong>0.6 0.4 </strong></p><p><strong>S</strong><sub style="top: 0.1769em;"><strong>6 </strong></sub></p><p><strong>0.2 0.0 </strong></p><ul style="display: flex;"><li style="flex:1"><strong>200 </strong></li><li style="flex:1"><strong>400 </strong></li><li style="flex:1"><strong>600 </strong></li><li style="flex:1"><strong>800 </strong></li><li style="flex:1"><strong>1000 </strong></li><li style="flex:1"><strong>1200 </strong></li><li style="flex:1"><strong>1400 </strong></li></ul><p></p><p><strong>Temperature, °F </strong></p><p>Updated: January 4, 2019 Copyright © 2019 John Jechura ([email protected]) <br>11 </p><p><strong>Viscosity of Molten Sulfur </strong></p><p><strong>10</strong><sup style="top: -0.6703em;"><strong>5 </strong></sup></p><p><strong>Pure Sulfur </strong></p><p><strong>10</strong><sup style="top: -0.6697em;"><strong>4 </strong></sup><strong>10</strong><sup style="top: -0.6703em;"><strong>3 </strong></sup><strong>10</strong><sup style="top: -0.6703em;"><strong>2 </strong></sup><strong>10</strong><sup style="top: -0.6697em;"><strong>1 </strong></sup><strong>10</strong><sup style="top: -0.6702em;"><strong>0 </strong></sup></p><ul style="display: flex;"><li style="flex:1"><strong>400 </strong></li><li style="flex:1"><strong>600 </strong></li></ul><p><strong>Temperature, °C </strong><br><strong>300 </strong></p><ul style="display: flex;"><li style="flex:1"><strong>500 </strong></li><li style="flex:1"><strong>700 </strong></li><li style="flex:1"><strong>800 </strong></li></ul><p></p><p>Updated: January 4, 2019 Copyright © 2019 John Jechura ([email protected]) <br>12 </p><p><strong>Viscosity of Molten Sulfur </strong></p><p><strong>10</strong><sup style="top: -0.6736em;"><strong>5 </strong></sup></p><p><strong>Pure Sulfur </strong></p><p><strong>H</strong><sub style="top: 0.1465em;"><strong>2</strong></sub><strong>S Partial Pressure, </strong></p><p><strong>10</strong><sup style="top: -0.673em;"><strong>4 </strong></sup></p><p><strong>psia </strong><br><strong>0.0015 </strong></p><p><strong>0.015 </strong></p><p><strong>10</strong><sup style="top: -0.6736em;"><strong>3 </strong></sup></p><p><strong>0.15 1.5 </strong></p><p><strong>10</strong><sup style="top: -0.6736em;"><strong>2 </strong></sup></p><p><strong>14.7 </strong></p><p><strong>10</strong><sup style="top: -0.673em;"><strong>1 </strong></sup><strong>10</strong><sup style="top: -0.6735em;"><strong>0 </strong></sup></p><ul style="display: flex;"><li style="flex:1"><strong>400 </strong></li><li style="flex:1"><strong>600 </strong></li></ul><p><strong>Temperature, °C </strong></p><ul style="display: flex;"><li style="flex:1"><strong>300 </strong></li><li style="flex:1"><strong>500 </strong></li><li style="flex:1"><strong>700 </strong></li><li style="flex:1"><strong>800 </strong></li></ul><p></p><p>Updated: January 4, 2019 Copyright © 2019 John Jechura ([email protected]) <br>13 </p><p><strong>Viscosity of liquid sulfur </strong></p><p>Updated: January 4, 2019 Copyright © 2019 John Jechura ([email protected]) <br>14 </p><p><strong>Sulfur recovery processes </strong></p><p>Updated: January 4, 2019 Copyright © 2017 John Jechura ([email protected]) </p><p><strong>Sulfur Recovery </strong></p><p>Typically a modified Claus process </p><p>▪ H<sub style="top: 0.4125em;">2</sub>S rich stream burned with 1/3 stoichiometric air. Hot gases are then </p><p>passed over alumina catalyst to produce free sulfur </p><ul style="display: flex;"><li style="flex:1">Combustion: </li><li style="flex:1">H<sub style="top: 0.41em;">2</sub>S + 1.5·O<sub style="top: 0.41em;">2 </sub>H<sub style="top: 0.41em;">2</sub>O + SO<sub style="top: 0.41em;">2 </sub></li></ul><p>Claus Reaction: 2·H<sub style="top: 0.41em;">2</sub>S + SO<sub style="top: 0.41em;">2 </sub>D 2·H<sub style="top: 0.41em;">2</sub>O + 3·S </p><p>▪ Sulfur formation reaction mildly exothermic </p><p>▪ Sulfur conversion reactors kept above 400<sup style="top: -0.5em;">o</sup>F (sulfur dew point) </p><p>The Claus reaction is <strong>reversible </strong>– therefore, 100% conversion can </p><p>never be achieved </p><p>▪ Practically, Claus units are limited to about 96% recovery ▪ Tail gas units are used to provide improved conversion </p><p>Updated: January 4, 2019 Copyright © 2019 John Jechura ([email protected]) <br>16 </p><p><strong>Modified Claus Process </strong></p><p><em>Petroleum Refining Technology & Economics – 5</em><sup style="top: -0.28em;"><em>th </em></sup><em>Ed. </em></p><p>by James Gary, Glenn Handwerk, & Mark Kaiser, CRC Press, 2007 </p><p><strong>Converters 400 – 700</strong><sup style="top: -0.3em;"><strong>o</strong></sup><strong>F </strong><br><strong>Burner & Reactor above 1800</strong><sup style="top: -0.3em;"><strong>o</strong></sup><strong>F </strong></p><p><strong>2300-2700</strong><sup style="top: -0.3em;"><strong>o</strong></sup><strong>F for NH</strong><sub style="top: 0.24em;"><strong>3 </strong></sub><strong>destruction </strong></p><p><em>GPSA Engineering Data Book</em>, 13th ed., </p><p>Fig. 22-2, 2012 </p><p>Updated: January 4, 2019 Copyright © 2019 John Jechura ([email protected]) <br>17 </p><p><strong>Temperature Regimes for the Claus Process </strong></p><p>Updated: January 4, 2019 Copyright © 2019 John Jechura ([email protected]) <br>18 </p><p><strong>Straight-through Claus Process </strong></p><p>gas reheat gas reheat </p><p>450°F </p><p>gas reheat waste heat </p><p>boiler </p><p></p><ul style="display: flex;"><li style="flex:1">420°F </li><li style="flex:1">400°F </li></ul><p></p><p>Claus #3 <br>HP steam <br>Claus #1 </p><p>590°F </p><p>Claus #2 acid </p><p>gas <br>LP </p><p></p><ul style="display: flex;"><li style="flex:1">453°F </li><li style="flex:1">300°F 407°F </li></ul><p></p><p>LP steam <br>LP </p><p>600°F <br>270°F </p><p>steam </p><p>375°F </p><p>steam 350°F </p><p>110°F 8 psig </p><p>condens condenser er </p><ul style="display: flex;"><li style="flex:1">condenser </li><li style="flex:1">condenser </li></ul><p>condenser </p><p>boiler feed air </p><p>water (BFW) <br>BFW <br>BFW </p><p>sulfur <br>BFW reaction </p><p>furnace </p><ul style="display: flex;"><li style="flex:1">sulfur </li><li style="flex:1">sulfur </li><li style="flex:1">sulfur </li></ul><p></p><p>1700 - 2400°F </p><p>tail gas </p><p>Updated: January 4, 2019 Copyright © 2019 John Jechura ([email protected]) <br>19 </p><p><strong>Equilibrium Conversion of H</strong><sub style="top: 0.66em;"><strong>2</strong></sub><strong>S to S </strong></p><p><strong>Temperature, </strong><sup style="top: -0.6896em;"><strong>o </strong></sup><strong>C </strong></p><ul style="display: flex;"><li style="flex:1"><strong>204 </strong></li><li style="flex:1"><strong>427 </strong></li><li style="flex:1"><strong>871 </strong></li><li style="flex:1"><strong>1316 </strong></li><li style="flex:1"><strong>1538 </strong></li></ul><p></p><ul style="display: flex;"><li style="flex:1"><strong>649 </strong></li><li style="flex:1"><strong>1093 </strong></li></ul><p></p><p><strong>100 </strong><br><strong>80 60 40 </strong></p><p><strong>melting point boiling point </strong></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>0</strong></li><li style="flex:1"><strong>400 </strong></li><li style="flex:1"><strong>800 </strong></li><li style="flex:1"><strong>1200 </strong></li><li style="flex:1"><strong>1600 </strong></li><li style="flex:1"><strong>2000 </strong></li><li style="flex:1"><strong>2400 </strong></li><li style="flex:1"><strong>2800 </strong></li></ul><p><strong>Temperature, °F </strong></p><p>Updated: January 4, 2019 Copyright © 2019 John Jechura ([email protected]) <br>20 </p><p><strong>Equilibrium Conversion of H</strong><sub style="top: 0.66em;"><strong>2</strong></sub><strong>S to S </strong></p><p><strong>100 </strong></p><p>Claus #3 <br>Furnace & waste heat boiler <br>Claus #2 </p><ul style="display: flex;"><li style="flex:1">1700 - 2400F </li><li style="flex:1">Claus #1 </li></ul><p></p><p><strong>80 60 40 </strong></p><p><strong>melting point boiling point </strong></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>0</strong></li><li style="flex:1"><strong>400 </strong></li><li style="flex:1"><strong>800 </strong></li><li style="flex:1"><strong>1200 </strong></li><li style="flex:1"><strong>1600 </strong></li><li style="flex:1"><strong>2000 </strong></li><li style="flex:1"><strong>2400 </strong></li><li style="flex:1"><strong>2800 </strong></li></ul><p></p><p><strong>Temperature, °F </strong></p><p>Updated: January 4, 2019 Copyright © 2019 John Jechura ([email protected]) <br>21 </p><p><strong>Hydrocarbons in the Claus Process </strong></p><p>Updated: January 4, 2019 Copyright © 2019 John Jechura ([email protected]) <br>22 </p><p><strong>Claus Process </strong></p><p>Use multiple stages to obtain highest conversion </p><p>▪ Typically three </p><p>Various flow patterns </p><p>▪ Straight-through – best, used whenever possible </p><p>▪ Split flow – best at low H<sub style="top: 0.41em;">2</sub>S feed concentrations (5 to 30 mol% H<sub style="top: 0.41em;">2</sub>S) </p><p>▪ Sulfur recycle < 5% H2S ▪ Direct oxidation < 5% H2S </p><p>Updated: January 4, 2019 Copyright © 2019 John Jechura ([email protected]) <br>23 </p><p><strong>Claus Process </strong></p><p>Claus unit feed usually contains H<sub style="top: 0.49em;">2</sub>S and CO<sub style="top: 0.49em;">2 </sub>High concentrations of noncombustible components (CO<sub style="top: 0.49em;">2</sub>, N<sub style="top: 0.49em;">2</sub>) </p><p>▪ Lower flame temperature ▪ Difficult to maintain stable combustion furnace flame temperatures below <br>1700<sup style="top: -0.5em;">o</sup>F </p><p>Solutions include </p><p>▪ Preheating air ▪ Preheating acid gas feed ▪ Enriching oxygen in air ▪ Using split-flow process </p><p>Updated: January 4, 2019 Copyright © 2019 John Jechura ([email protected]) <br>24 </p><p><strong>Split-flow Claus Process </strong></p><p>gas reheat gas reheat gas reheat </p><p>HP steam </p><p></p><ul style="display: flex;"><li style="flex:1">Claus #3 </li><li style="flex:1">Claus #2 </li></ul><p></p><ul style="display: flex;"><li style="flex:1">Claus #2 </li><li style="flex:1">Claus #1 </li><li style="flex:1">2/3 flow </li></ul><p></p><p>1/3 flow </p><ul style="display: flex;"><li style="flex:1">LP </li><li style="flex:1">LP </li></ul><p></p><p>steam <br>LP steam steam acid gas </p><p>condenser </p><p>BFW ccoonnddeennsseerr </p><ul style="display: flex;"><li style="flex:1">condenser </li><li style="flex:1">condenser </li><li style="flex:1">condenser </li><li style="flex:1">condenser </li></ul><p></p><p>air </p><p>boiler feed water (BFW) </p><p>BFW </p><ul style="display: flex;"><li style="flex:1">sulfur </li><li style="flex:1">sulfur </li><li style="flex:1">sulfur </li></ul><p>reaction </p><p>furnace sulfur tail gas </p><p>Updated: January 4, 2019 Copyright © 2019 John Jechura ([email protected]) <br>25 </p><p><strong>Typical Claus Configurations </strong></p><p><strong>Approximate </strong></p><p><strong>concentration of </strong><br><strong>Process variation </strong></p><p><strong>H</strong><sub style="top: 0.43em;"><strong>2</strong></sub><strong>S in feed </strong><br><strong>(mol%) </strong></p><p>55 - 100 <br>30 - 55 </p><p>15 - 30 </p><p>10 - 15 <br>5 - 10 <br>Straight-through Straight-through + acid gas and/or air preheat </p><p>Split-flow or acid gas and/or air preheat </p><p>Split-flow with acid gas and/or air preheat Split-flow with fuel added, O<sub style="top: 0.43em;">2 </sub>enrichment, or with acid gas and air preheat </p><p>Updated: January 4, 2019 Copyright © 2019 John Jechura ([email protected]) <br>26 </p><p><strong>Tail Gas Clean Up </strong></p><p>Three process categories: Direct oxidation of H<sub style="top: 0.49em;">2</sub>S to sulfur (Superclaus) </p><p>2 H<sub style="top: 0.49em;">2</sub>S + O<sub style="top: 0.49em;">2 </sub>→ 2 S + 2 H<sub style="top: 0.49em;">2</sub>O </p><p>Sub-dew point Claus processes (Cold Bed Adsorption) SO<sub style="top: 0.49em;">2 </sub>reduction and recovery of H<sub style="top: 0.49em;">2</sub>S (SCOT) </p><p>Updated: January 4, 2019 Copyright © 2019 John Jechura ([email protected]) <br>27 </p><p><strong>Claus Tail Gas Cleanup </strong></p><p>Conventional 3-stage Claus units recover 96 to 97.5% of sulfur </p><p>▪ Remainder was burned to SO<sub style="top: 0.4125em;">2 </sub>and vented </p><p>▪ Adding fourth stage results in 97 to 98.5% recovery </p><p>Regulations now require 99.8 to 99.9% recovery </p><p>Meeting regulations requires modified technology </p><p>Updated: January 4, 2019 Copyright © 2019 John Jechura ([email protected]) <br>28 </p><p><strong>Shell Claus Offgas Treating (SCOT) </strong></p><p>Four step process: </p><p>▪ Mix feed with reducing gas (H<sub style="top: 0.41em;">2 </sub>and CO) </p><p>▪ Convert all sulfur compounds to H<sub style="top: 0.41em;">2</sub>S ▪ Cool the reactor gas ▪ Strip H<sub style="top: 0.41em;">2</sub>S using amine </p><p><strong>To Stack </strong><br><strong>Claus Tail Gas </strong><br><strong>H</strong><sub style="top: 0.0862em;"><strong>2</strong></sub><strong>S Recycle </strong></p><p><strong>Reducing Gas </strong><br><strong>Catalytic Reactor </strong><br><strong>Air </strong></p><p><strong>Furnace </strong><br><strong>Fuel </strong></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>Low Pressure </strong></li><li style="flex:1"><strong>Low Pressure </strong></li></ul><p><strong>Steam </strong><br><strong>H</strong><sub style="top: 0.0859em;"><strong>2</strong></sub><strong>O </strong><br><strong>Steam Reboiler </strong></p><p>Updated: January 4, 2019 Copyright © 2019 John Jechura ([email protected]) <br>29 </p><p><strong>SCOT Process </strong></p><p><strong>To Stack </strong><br><strong>Claus Tail Gas </strong></p><p><strong>Reducing Gas </strong><br><strong>H</strong><sub style="top: 0.0862em;"><strong>2</strong></sub><strong>S Recycle </strong><br><strong>Catalytic Reactor </strong><br><strong>Air </strong></p><p><strong>Furnace </strong><br><strong>Fuel </strong></p><p><strong>Low Pressure </strong><br><strong>Steam </strong><br><strong>Low Pressure Steam Reboiler </strong><br><strong>H</strong><sub style="top: 0.0858em;"><strong>2</strong></sub><strong>O </strong></p><p>Mix Claus tail </p><p>gas with H<sub style="top: 0.32em;">2 </sub>and sulfur compounds to H<sub style="top: 0.32em;">2</sub>S </p><p>CO and heat in Reactions: </p><p>Catalytically convert all </p><p>Cool reactor gas </p><p>Strip H<sub style="top: 0.32em;">2</sub>S from gas & recycle to </p><p>(exiting at ~570<sup style="top: -0.4em;">o</sup>F Claus in waste heat </p><p>Typically use MDEA – can get to </p><p>SO<sub style="top: 0.2817em;">2 </sub>+ 3H<sub style="top: 0.2817em;">2 </sub>→ H<sub style="top: 0.2817em;">2</sub>S + 2H<sub style="top: 0.2817em;">2</sub>O </p><p>S<sub style="top: 0.28em;">2 </sub>+ 2H<sub style="top: 0.28em;">2 </sub>→ 2H<sub style="top: 0.28em;">2</sub>S COS + H<sub style="top: 0.28em;">2</sub>O → CO<sub style="top: 0.28em;">2</sub>+ H<sub style="top: 0.28em;">2</sub>S CS<sub style="top: 0.28em;">2 </sub>+ 2H<sub style="top: 0.28em;">2</sub>O → CO<sub style="top: 0.28em;">2 </sub>+ H<sub style="top: 0.28em;">2</sub>S </p><p>inline burner </p><p>exchanger and </p><p>water wash to complete cooling. </p><p>low H<sub style="top: 0.3217em;">2</sub>S levels in Stack Gas & </p><p>slip CO<sub style="top: 0.32em;">2 </sub>so it doesn’t build up in </p><p>the recycle gas </p><p>Updated: January 4, 2019 Copyright © 2019 John Jechura ([email protected]) <br>30 </p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages36 Page
-
File Size-