Rayleigh Sound Wave Propagation on a Gallium Single Crystal in a Liquid He3 Bath G

Rayleigh Sound Wave Propagation on a Gallium Single Crystal in a Liquid He3 Bath G

<p><strong>Rayleigh sound wave propagation on a gallium single crystal in a liquid He3 bath </strong></p><p>G. Bellessa </p><p><strong>To cite this version: </strong></p><p>G. Bellessa.&nbsp;Rayleigh sound wave propagation on a gallium single crystal in a liquid He3 bath.&nbsp;Journal de Physique Lettres, Edp sciences, 1975, 36 (5), pp.137-139.&nbsp;ꢀ10.1051/jphyslet:01975003605013700ꢀ. ꢀjpa-00231172ꢀ </p><p><strong>HAL Id: jpa-00231172 </strong><a href="/goto?url=https://hal.archives-ouvertes.fr/jpa-00231172" target="_blank"><strong>https://hal.archives-ouvertes.fr/jpa-00231172 </strong></a></p><p>Submitted on 1 Jan 1975 </p><ul style="display: flex;"><li style="flex:1"><strong>HAL </strong>is a multi-disciplinary open access </li><li style="flex:1">L’archive ouverte pluridisciplinaire <strong>HAL</strong>, est </li></ul><p>archive for the deposit and dissemination of sci-&nbsp;destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub-&nbsp;scientifiques de niveau recherche, publiés ou non, lished or not.&nbsp;The documents may come from&nbsp;émanant des établissements d’enseignement et de teaching and research institutions in France or&nbsp;recherche français ou étrangers, des laboratoires abroad, or from public or private research centers.&nbsp;publics ou privés. </p><p>L-137 </p><p>RAYLEIGH </p><p>GALLIUM </p><p>SINGLE </p><p>SOUND </p><p>WAVE </p><p>CRYSTAL IN </p><p>PROPAGATION </p><p>A</p><p>ON </p><p>A</p><p>He3 BATH </p><p>LIQUID </p><p>G. BELLESSA </p><p>Laboratoire de </p><p>des Solides </p><p>91405 </p><p>Physique </p><p>Centre </p><p>(*) </p><p>Université </p><p>France </p><p>Paris-Sud, </p><p>d’Orsay, </p><p>Orsay, </p><p>Résumé. </p><p>un monocristal de </p><p>Nous décrivons </p><p>de </p><p>l’observation de la </p><p>d’ondes </p><p>sur </p><p>propagation </p><p>d’études sont </p><p>élastiques </p><p>Rayleigh </p><p>entre 40 MHz et 120 MHzet </p><p>Les </p><p>gallium. </p><p>d’étude la </p><p>fréquences </p><p>basse est K. La </p><p>comprises </p><p>la </p><p>et </p><p>vitesse </p><p>l’atténuation sont étudiées </p><p>le bain </p><p>à</p><p>des </p><p>0,4 </p><p>température </p><p>tures différentes. L’atténuation des ondes de </p><p>plus </p><p>tempéraà des tem- </p><p>d’He3 est aussi étudiée </p><p>Rayleigh par </p><p>et des </p><p>différentes. </p><p>pératures </p><p>fréquences </p><p>Abstract. </p><p>We </p><p>the </p><p>report </p><p>observation of the </p><p>to 120 MHzand </p><p>sound wave </p><p>on </p><p>a</p><p>Rayleigh </p><p>propagation </p><p>gallium </p><p>and the </p><p>the He3 </p><p>at </p><p>down to 0.4 K. The </p><p>single crystal </p><p>frequencies up </p><p>temperatures </p><p>velocity </p><p>by </p><p>attenuation are studied </p><p>at different </p><p>The </p><p>attenuation of </p><p>waves </p><p>temperatures. </p><p>and </p><p>Rayleigh bath is also </p><p>studied at different </p><p>temperatures </p><p>frequencies. </p><p>Elastic surface waves have been </p><p>studied </p><p>quartz </p><p>combs are </p><p>comb teeth are 20 </p><p>other of 40 </p><p>on the ZnS film </p><p>The </p><p>extensively </p><p>and lithium </p><p>evaporated </p><p>1). </p><p>(Fig. </p><p>on </p><p>wide and </p><p>are distant from each </p><p>materials, </p><p>piezoelectric </p><p>mainly </p><p>p. </p><p>niobate </p><p>waves on </p><p>There are <sup style="top: -0.01em;">also </sup>some </p><p>films </p><p>studies of </p><p>Each comb consists </p><p>of teeth and is </p><p>40 </p><p>[1]. </p><p>Rayleigh </p><p>on </p><p>~. </p><p>a</p><p>distant from its </p><p>0.5 </p><p>6</p><p>mm. </p><p>A</p><p>RF </p><p>piezoelectric </p><p>evaporated </p><p>glass </p><p>neighbour by </p><p>pulse </p><p>substrate </p><p>The effects of thin </p><p>metallic films eva- </p><p>is </p><p>between <sup style="top: -0.01em;">one </sup>comb </p><p>[2]. </p><p>on </p><p>(about </p><p>duration) </p><p>gas </p><p>applied </p><p>a</p><p>substrate have been </p><p>and the </p><p>metallic </p><p>is </p><p>porated </p><p>studied </p><p>piezoelectric </p><p>sample (the </p><p>sample </p><p>grounded). </p><p>and the effects of the </p><p>electrons on <sup style="top: 0.01em;">the </sup></p><p>[3, 4] </p><p>of </p><p>waves have been observed </p><p>propagation </p><p>Rayleigh </p><p>the </p><p>(mainly </p><p>transition). </p><p>normal-superconducting </p><p>However the </p><p>of these effects are </p><p>small, </p><p>magnitude </p><p>because the thickness of the </p><p>much smaller than the </p><p>films are </p><p>evaporated </p><p>In this </p><p>wave </p><p>Rayleigh wavelength. </p><p>ofthe </p><p>we </p><p>the observation </p><p>a</p><p>letter, </p><p>report </p><p>on </p><p>Rayleigh </p><p>We </p><p>single crystal. </p><p>the attenuation </p><p>propagation </p><p>gallium </p><p>report </p><p>varia- </p><p>some </p><p>results about </p><p>preliminary </p><p>transition and </p><p>tion in the </p><p>normal-superconducting </p><p>waves </p><p>He3. </p><p>aboutthe attenuationof </p><p>Rayleigh </p><p>byliquid </p><p>The </p><p>is </p><p>single crystal </p><p>Experimental technique. </p><p>made with </p><p>in </p><p>The </p><p>a</p><p>mold </p><p>which </p><p>plastic </p><p>single crystal </p><p>very pure gallium </p><p>has two </p><p>machined and </p><p>faces </p><p>is not </p><p>wave </p><p>FIG. 1. </p><p>for </p><p>wave </p><p>the </p><p>polished </p><p>[5]. </p><p>Experimental </p><p>arrangement </p><p>are the </p><p>Rayleigh </p><p>gene- </p><p>ration. The </p><p>c</p><p>axis </p><p>axis ofthe Gallium </p><p>a, b, </p><p>surfaces for the </p><p>crystallographic </p><p>good </p><p>Rayleigh </p><p>with </p><p>the </p><p>usual notations. </p><p>crystal </p><p>are obtained </p><p>this method. The </p><p>propagation </p><p>directly by </p><p>flat surfaces of the </p><p><sup style="top: -0.01em;">are </sup>normal to the </p><p>b</p><p>gallium crystal </p><p>film </p><p>ZnS </p><p>of </p><p>is </p><p>axis </p><p>and </p><p>onto the </p><p>a</p><p>(Fig. 1) </p><p>evaporated (about </p><p>A</p><p>the </p><p>wave </p><p>is </p><p>on the metal surface if </p><p>Rayleigh </p><p>generated </p><p>This </p><p>film </p><p>6</p><p>000 </p><p>A) </p><p>crystal. </p><p>piezoelectric </p><p>of </p><p>the RF </p><p>is </p><p>the wave- </p><p>such that </p><p>frequency </p><p>pulse </p><p>acts as an electro-mechanical transducer. Twometallic </p><p>of the </p><p>wave </p><p>the teeth </p><p>length </p><p>Rayleigh </p><p>equals </p><p>propagates </p><p>reaches the second comb </p><p>spacing. <br>The acoustic surface </p><p>wave </p><p>normal to the </p><p>comb teeth and </p><p>is </p><p>Laboratoire <sup style="top: -0.01em;">associe </sup>au C.N.R.S. </p><p>(*) </p><p>(which </p><p>Article published online by <a href="/goto?url=http://www.edpsciences.org" target="_blank">EDP Sciences </a>and available at <a href="/goto?url=http://dx.doi.org/10.1051/jphyslet:01975003605013700" target="_blank">http://dx.doi.org/10.1051/jphyslet:01975003605013700 </a></p><p>L-138 </p><p>well </p><p>to the first </p><p>after </p><p>a</p><p>certain </p><p>time. At </p><p>TABLE </p><p>I</p><p>one) </p><p>is observed on </p><p>parallel </p><p><sup style="top: 0.01em;">an </sup>RF<sub style="top: 0.17em;">pulse </sub></p><p>this time </p><p>the </p><p>second comb. </p><p>in </p><p>at </p><p>waves velocities </p><p>105 </p><p>Rayleigh </p><p>(in </p><p>cm/s) </p><p>gallium </p><p>no reflexion of the </p><p>Weobserve </p><p>combs. So </p><p>case of bulk acoustic </p><p>on <sup style="top: -0.01em;">the </sup></p><p>pulse </p><p>The </p><p>b</p><p>axis </p><p>is normal </p><p>different </p><p>(in Kelvin). </p><p>temperatures </p><p>and the </p><p>sound </p><p>there are no <sup style="top: 0.01em;">successive </sup></p><p>and it is not </p><p>echoes </p><p>in the </p><p>(as </p><p>to the </p><p>The </p><p>is </p><p>the </p><p>c</p><p>a.~is. </p><p>surface </p><p>propagation </p><p>along </p><p>wave </p><p>to make an </p><p>waves) </p><p>possible </p><p>velocities </p><p>the bulk </p><p>for </p><p>propagation </p><p>measurement of the attenuation. </p><p>absolute </p><p>In </p><p>order to </p><p>three </p><p>evaporate </p><p>the </p><p>b</p><p>axis are taken </p><p>K. R. </p><p>and </p><p>along </p><p>from </p><p>Lyall </p><p>do </p><p>it </p><p>would be </p><p>to </p><p>this, </p><p>necessary </p><p>J. F. Cochran </p><p>[6]. </p><p>metallic combs on <sup style="top: -0.01em;">the </sup></p><p>2</p><p>shows the </p><p>crystal. Figure </p><p>that we <sup style="top: 0.01em;">observe </sup>on the </p><p>second comb </p><p>delayed pulse </p><p>after </p><p>and detection. The first saturated </p><p>to the </p><p>amplification </p><p>excitation of the </p><p>waves </p><p>on </p><p>pulse corresponds </p><p>pulsed </p><p>emitter comb. We have observed </p><p>at 40 MHz </p><p>Rayleigh </p><p>80 MHz and </p><p>gallium </p><p>(fundamental), </p><p>harmonics). </p><p>120 MHz<sub style="top: 0.16em;">(2nd </sub>and 3rd </p><p>We have also </p><p>the </p><p>in </p><p>K</p><p>a</p><p>field </p><p>put </p><p>sample </p><p>At 0.4 </p><p>magnetic </p><p>to the </p><p>is </p><p>there </p><p>a</p><p>(normal </p><p>surface). </p><p>sharp </p><p>super- </p><p>In the normal </p><p>in the attenuation in the </p><p>transition </p><p>of </p><p>the </p><p>change </p><p>vicinity </p><p>conducting </p><p>(around 60 Oe). </p><p>2</p><p>it </p><p>the attenuation increases </p><p>to </p><p>kOe. </p><p>Then </p><p>state, </p><p>up </p><p>remains </p><p>constant </p><p>to 10 kOe. The total </p><p>roughly </p><p>up </p><p>K</p><p>MHz </p><p>and 80 </p><p>is </p><p>variation of the attenuation at 0.4 </p><p>found to be : </p><p>Attenuation of </p><p>waves </p><p>He~. </p><p>rayleigh </p><p>by liquid </p><p>of </p><p>The main mechanism of </p><p>absorption </p><p>Rayleigh </p><p>compres- </p><p>waves </p><p>ambient </p><p>media is the emission of </p><p>by </p><p><sup style="top: -0.01em;">sional </sup>waves <sup style="top: -0.01em;">in </sup></p><p>the fluid </p><p>the </p><p>during </p><p>propagation [1]. </p><p>This </p><p>for the attenuation : </p><p>process </p><p>gives </p><p>FIG. 2. </p><p>to the the </p><p>Recorder </p><p>wave </p><p>of </p><p>the </p><p>The </p><p>first saturated </p><p>a) </p><p>tracing </p><p>delayed </p><p>pulse corresponding </p><p>train. </p><p>to </p><p>Rayleigh </p><p>pulse corresponds </p><p>excitation of the emitter comb. </p><p>Recorder </p><p></p><ul style="display: flex;"><li style="flex:1">of </li><li style="flex:1">pulsed </li></ul><p></p><p>b) </p><p>versus the </p><p>tracing </p><p>the </p><p>variation </p><p>level. Out </p><p>delayed </p><p>sample </p><p>changed by </p><p>pulse amplitude </p><p>liquid </p><p>liquid </p><p>at 1.2 K. </p><p>where </p><p>the </p><p>is the fluid </p><p>the </p><p>the </p><p>in </p><p>sound </p><p>pp </p><p>density, VF </p><p>of the </p><p>velocity </p><p>the </p><p>wave. </p><p>means </p><p>surface </p><p>out of the He3 bath. The </p><p>level is </p><p>fluid, </p><p>solid, </p><p>p</p><p>density </p><p>VR </p><p>Rayleigh </p><p>He3 </p><p>and ÅR </p><p>liquefying </p><p>gaz </p><p>slowly </p><p>and the </p><p>of the </p><p>a</p><p>velocity </p><p>wavelength </p><p>we start from </p><p>surface out of </p><p>of the </p><p>wave </p><p>Experimentally, </p><p>sample </p><p>and attenuation </p><p>to measure the </p><p>measurements. </p><p>wave </p><p>There </p><p>Velocity </p><p>are two </p><p>the He3 bath and we record the </p><p>amplitude </p><p>Rayleigh </p><p>liquid </p><p>ways </p><p>Rayleigh </p><p>velocity. </p><p>to the </p><p>delayed pulse corresponding </p><p>,</p><p>Thefirst one is to measure the transit time ofthe </p><p>between the two combs. The second is to </p><p>pulse. </p><p>train </p><p>Wethen </p><p>and werecord </p><p>as soon as </p><p>the </p><p>level in the </p><p>(Fig. 2). </p><p>change </p><p></p><ul style="display: flex;"><li style="flex:1">the </li><li style="flex:1">adjust </li></ul><p></p><p>a</p><p>decrease ofthe </p><p>cryostat </p><p>delayed pulse </p><p>of the RF </p><p>in order to obtain the </p><p>on the receiver </p><p>frequency </p><p>largest amplitude </p><p>pulse </p><p>of the </p><p>He3 covers the </p><p>recorder </p><p>the attenuation does not </p><p>amplitude </p><p>liquid </p><p>sample </p><p>delayed pulse </p><p>surface. </p><p>2</p><p>shows such </p><p>a</p><p>As </p><p>tracing. </p><p>Figure </p><p>comb. This last method is the most sensitive because </p><p>can be seen on the </p><p>curve, </p><p>to its final value. We shall </p><p>the </p><p>of the comb’ is </p><p>ofthe numberofteeth andour combs </p><p>to the </p><p>selectivity </p><p>proportional </p><p>consider this </p><p>fall </p><p>directly </p><p>square </p><p>are </p><p>(40 teeth) </p><p>varia- </p><p>In </p><p>later. Wehave measured the attenuation </p><p>point </p><p>I</p><p>Table </p><p>the results of our </p><p>selective </p><p>[1 ]. </p><p>gives </p><p>very </p><p>different </p><p>and </p><p>tion for </p><p>frequencies. </p><p>temperatures </p><p>measurements at different </p><p>and the bulk </p><p>temperatures </p><p>comparison </p><p>measure the attenuation </p><p>the ratio of the </p><p>we do not </p><p>in the two </p><p>to the </p><p>order to </p><p>take </p><p>variation, </p><p>wave velocities for </p><p>As we have written </p><p>from ref. </p><p>(taken </p><p>[6]). </p><p>pulse heights </p><p>simply </p><p>we cannot </p><p>measure the </p><p>above, </p><p>errors </p><p>This method can introduce </p><p>ofthe </p><p>cases. </p><p>owing </p><p>absolute attenuation but wecan measure <sup style="top: 0.01em;">the </sup>variation </p><p>Weavoid this </p><p>non-linearity </p><p>amplifiers. </p><p>possible </p><p>ofthe attenuationversus </p><p>The </p><p>attenuation </p><p>4.2 </p><p>and </p><p>temperature. </p><p>the RF </p><p>generator amplitude </p><p>difficulty, by changing </p><p>is found to be </p><p>constant between </p><p>K</p><p>roughly </p><p>in </p><p>to obtain the same </p><p>We then take the ratio </p><p>the two </p><p>corresponding </p><p>Our results are </p><p>in order </p><p>pulse height </p><p>1.1 </p><p>K<sub style="top: 0.18em;">(superconducting </sub></p><p>transition </p><p>Below 1.1 </p><p>K</p><p>of Ga). </p><p>sensitive to the </p><p>of the </p><p>cases. </p><p>is </p><p>the attenuation </p><p>very </p><p>temperature. </p><p>of the </p><p>values </p><p>generator amplitude. </p><p>have found for </p><p>We </p><p>the variation of the attenuation </p><p>in Table II. There is no measurement at </p><p>and 1.2 K&nbsp;because the attenuation of </p><p>reported </p><p>of surface waves at 80 MHz : </p><p>,</p><p>120 MHz </p><p>waves <sup style="top: -0.01em;">in </sup></p><p>is </p><p>above the </p><p>11 </p><p>0.5 </p><p>K) - </p><p>K) </p><p>~(0.4 </p><p>dB/cm . </p><p>gallium </p><p>very large </p><p>Rayleigh </p><p>o~(1.2 </p><p>L-139 </p><p>TABLE II </p><p>In </p><p>variation </p><p>conclusion let us </p><p>consider the </p><p>covers the </p><p>attenuation </p><p>surface </p><p>.</p><p>as </p><p>the </p><p>Measured values </p><p>waves <sup style="top: -0.01em;">in </sup></p><p>the attenuation </p><p>just </p><p>In </p><p>maximum </p><p>liquid </p><p>sample </p><p>of </p><p>(in </p><p>dB/cm) </p><p>(leal </p><p>of </p><p><sup style="top: -0.01em;">this </sup>case the </p><p>attenuation curve has successi- </p><p>He3. </p><p>is </p><p>(Fig. 2). </p><p>the </p><p>Rayleigh </p><p>gallium by liquid </p><p>a</p><p>and </p><p>2</p><p>a</p><p>minimum before </p><p>its </p><p>calculated value </p><p>1. </p><p>At 0.4 </p><p>K</p><p>Gallium </p><p>vely </p><p>reaching </p><p>obtained from </p><p>eq. </p><p>final value </p><p>the </p><p>minimum </p><p>corres- </p><p>is </p><p>T</p><p>is </p><p>the </p><p>wave. </p><p>F</p><p>and </p><p>the </p><p>(in Fig. </p><p>amplitude </p><p>superconducting. </p><p>temperature </p><p>to the </p><p>This </p><p>behaviour </p><p>attenuation </p><p>the </p><p>ponds </p><p>can be </p><p>maximum). </p><p>frequencyof </p><p>Rayleigh </p><p>into account the effect ofan </p><p>surface. The attenuation </p><p>explained by taking </p><p>helium film </p><p>the </p><p>on </p><p>sample </p><p>does </p><p>not consider </p><p>return </p><p>to </p><p>(1) </p><p>any </p><p>waves on <sup style="top: -0.01em;">the </sup>surface </p><p>process leading </p><p>of the emitted </p><p>eq. </p><p>compressional </p><p>helium </p><p>film </p><p>on the </p><p>a</p><p>there is </p><p>If, </p><p>sample. </p><p>sample, </p><p>to </p><p>it is then </p><p>instead ofa semi-infinite </p><p>media, </p><p>reflections. </p><p>necessary </p><p>the </p><p>consider such </p><p>wave <sup style="top: -0.01em;">radiates </sup></p><p>Schematically </p><p>Rayleigh </p><p>a</p><p>wave </p><p>which is almost </p><p>compressional </p><p>transition </p><p>and </p><p>temperature </p><p>significant </p><p>it </p><p>has </p><p>the </p><p>superconducting </p><p>is </p><p>to Arc </p><p>normal to the surface </p><p>(the </p><p>angle </p><p>compressional </p><p>of the film and then returns </p><p>therefore </p><p>equal </p><p>notbeen </p><p>possible </p><p>to </p><p>obtain </p><p>a</p><p>value. </p><p>The </p><p>calculated </p><p>(leal is </p><p>The </p><p>wave is reflected </p><p>sin </p><p>40). </p><p>VF/VR </p><p>on <sup style="top: 0.01em;">the </sup></p><p>calculated </p><p>values are </p><p>obtained from </p><p>value </p><p>eq. (1). </p><p>surface </p><p>sample </p><p>upper </p><p>toward the </p><p>smaller than </p><p>therefore seems there is </p><p>the </p><p>systematically </p><p>experi- </p><p>surface. There are </p><p>mental ones. <sup style="top: -0.01em;">It </sup></p><p>attenuation </p><p>the </p><p>wave. </p><p>wave and the </p><p>If the interferences are </p><p>interferences between </p><p>Rayleigh </p><p>mechanism other than that due to the </p><p>emission of </p><p>reflected </p><p>compressional </p><p>waves </p><p>the </p><p>It is </p><p>compressional </p><p>during </p><p>to consider in the </p><p>propagation. </p><p>if </p><p>d</p><p>destructive i.e. </p><p>2 d </p><p>is </p><p>+</p><p>(2 n </p><p>1) </p><p>(where </p><p>in the </p><p>~,F/2 </p><p>not </p><p>case the </p><p>necessary </p><p>present </p><p>from frictional </p><p>the film thickness </p><p>there is an attenuation maximum. There is <sup style="top: 0.02em;">also </sup>an </p><p><sup style="top: -0.18em;">and </sup>the </p><p>wavelength </p><p>fluid), </p><p>attenuation </p><p>losses </p><p>process arising </p><p>[1]. </p><p>This mechanism </p><p>x</p><p>indeed </p><p>a</p><p>attenuation </p><p>gives </p><p>negligible </p><p>minimum </p><p>if </p><p>attenuation </p><p>2 d ^~ </p><p>Thus </p><p>the maxi- </p><p>~p. </p><p>MHz. At 0.4 </p><p>at 80 </p><p>K</p><p>to </p><p>5</p><p>10-3 </p><p>equal </p><p>(Ga </p><p>dB/cm </p><p>mum<sup style="top: 0.01em;">and </sup>the minimum of the attenuation in </p><p>2</p><p>figure </p><p>is then </p><p>the </p><p>attenuation </p><p>superconducting), </p><p>by </p><p>would </p><p>and </p><p>to </p><p>a</p><p>thickness of </p><p>film </p><p>correspond </p><p>0.5 ~ </p><p>~,F/4 </p><p>He3 versus </p><p>does not deviate </p><p>liquid </p><p>frequency </p><p>appre- </p><p>if </p><p>the </p><p>/!.F/2 </p><p>1 ~ </p><p>respectively. Experimentally, </p><p>from </p><p>a</p><p>linear law in </p><p>with </p><p>ciably </p><p>agreement </p><p>longer proportional </p><p>what weare </p><p>(1). </p><p>to </p><p>eq. </p><p>film thickness was <sup style="top: -0.01em;">well </sup>defined there would </p><p>be </p><p>absorp- </p><p>At 1.2 </p><p>K</p><p>the attenuation is no </p><p>tion resonances for </p><p>resonances would be </p><p>thicknesses and these </p><p>In our case the film </p><p>many </p><p>very sharp. </p><p>the </p><p>here </p><p>is, </p><p>frequency. Perhaps, </p><p>beginning, </p><p>surface wave <sup style="top: -0.01em;">attenuation </sup></p><p>observing </p><p>at its </p><p>the effect of the electrons on the </p><p>thickness is </p><p>not well defined and we <sup style="top: -0.01em;">observe </sup></p><p>resonance. </p><p>probably </p><p>helium. </p><p>This </p><p>by liquid </p><p>Kapitza </p><p>a</p><p>only </p><p>very damped </p><p>in the </p><p>effect is involved </p><p>resistance </p><p>pro- </p><p>Theauthor is indebted to L. </p><p>Dumoulinand M. Boix </p><p>for useful </p><p>advices about the </p><p>and to J. Joffrin for </p><p>blem </p><p>and has been observed in </p><p>[7] </p><p>gallium [8]. Expe- </p><p>necessary </p><p>riments at </p><p>date this </p><p>are </p><p>to eluci- </p><p>frequencies </p><p>evaporation </p><p>fruitful </p><p>discussion. </p><p>higher </p><p>techniques </p><p>a</p><p>interesting point. </p><p>References </p><p>K. and </p><p>Mason </p><p>edited </p><p>France S. A. for the </p><p>of </p><p>DRANSFELD, </p><p>SALZMANN, E., </p><p>Acoustics, </p><p>1970, </p><p>J. </p><p>[1] </p><p>[2] </p><p>Physical </p><p>by </p><p>supply </p><p>very pure gallium. </p><p>49 </p><p>P. </p><p><sub style="top: 0.13em;">(Academic, </sub>New<sub style="top: 0.12em;">York) </sub></p><p>vol. </p><p>219. </p><p>K. R. and </p><p>COCHRAN, </p><p>J. </p><p>Can. J. </p><p>1076. </p><p>W. </p><p>7, </p><p>LYALL, </p><p>F., </p><p>Teor. Fiz. 43 </p><p>[6] </p><p>Phys. </p><p>(1971) </p><p>p. </p><p>44 </p><p>A. </p><p>Zh. </p><p>1535 </p><p>K. and </p><p>INABA, R., KAJIMURA, </p><p>MIKOSHIBA, N., </p><p>[7] ANDREEV, </p><p>F., </p><p>(1962) </p><p>(Sov. Phys. </p><p>Appl. Phys. </p><p>Eksp. </p><p>(1963) 1084). </p><p>F. J. and </p><p>JETP 16 </p><p>2495. </p><p>(1973) </p><p>AKAO, F., </p><p>409. </p><p>Rev. </p><p>Lett. 30A </p><p>WAGNER, F., KOLLARITS, </p><p>YAQUB, M., </p><p></p><ul style="display: flex;"><li style="flex:1">[8] </li><li style="flex:1">[3] </li></ul><p>[4] [5] </p><p>Phys. </p><p>(1969) </p><p>Rev. B 7 </p><p>Phys. </p><p>1117. </p><p>119. </p><p>Lett. 32 </p><p>KRÄTZIG, E., </p><p>(1973) </p><p>to P. DE LA </p><p>(1974) </p><p>Phys. </p><p>of Alusuisse </p><p>The author is indebted </p><p>BRETÈQUE </p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    4 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us