Evolution Des Reliefs En Mongolie-Sibérie

Evolution Des Reliefs En Mongolie-Sibérie

Chronologie et évolution des reliefs dans la région Mongolie-Sibérie: Approches thermochronologique et morphotectonique R.Vassallo (1), J-F.Ritz (1), M. Jolivet (1), R. Braucher (2), S. Carretier (3), C. Larroque (4), A. Chauvet (1), C. Sue (5), M.Todbileg (6), D. Bourlès (2), A. Arzhannikova and S. Arzhannikov (7) (1) Laboratoire Dynamique de la Lithosphère, Université Montpellier II, France, (2) CEREGE, Aix-en-Provence, France, (3) LMTG,Toulouse, France, (4) Géosciences Azur, Sophia-Antipolis,Valbonne, France, (5) Département de Géologie, Université de Neuchatel, Suisse, (6) Mongolian University of Science and Technology, Ulaan Baatar, Mongolia, (7) Institut of Earth Crust, Irkutsk, Russia. Our study focuses on the mountain building process of a massif in an intracontinental transpressional domain.The Ih Bogd massif, situated along the Bogd fault, a major intracontinental active strike- slip fault in the eastern Gobi-Altay (Mongolia), presents a morphology exceptionally well preserved and shows clear relationships between topography and structures, allowing the analysis of its morphological and tectonic evolution. We coupled morphotectonics and 10Be ages to constrain the history of the incision in the main drainage basin of Ih Bogd massif. This study allows a better understanding of the mechanisms and the timing of the interactions between climate and tectonics within Gobi-Altay massifs. 85˚ 90˚ 95˚ 100˚ 105˚ 110˚ 115˚ PROJECTION MERCATOR Sa Using fission tracks on apatites, Vassallo et al. (in revision for EPSL) dated the peneplanation to the Jurassic. The preservation of this yan Est CRATON surface attests of the low erosion rate in the region - except the occurrence of a few glacial deposits in the upper northern flank, the 55˚ 55˚ Ih Bogd massif does not present any large scale glacial morphology such as moraines, glacial stairways, rock bars - and shows that its ? ? SIBERIEN yanOuest Sa al recent uplift occurred without major tilting or folding. Fission tracks cooling path models suggest that this uplift started between 8 k and 2 Ma, which makes the long-term Cenozoic uplift rate of the massif lying between 0.25 and 1 mm/yr (Vassallo et al., in revision Baï for EPSL). In comparison, the vertical slip rates estimated along the bordering reverse faults during the Upper Pleistocene (0.1-0.2 <100 ka 50˚ Larroque et al., 1999 50˚ mm/yr) are slightly lower (Ritz et al., in press). Arzhannikova et al., 2004 De Vicente, M2 2006 1-5Ma Vassallo, thèse en cours A lta y Go bi-Altay 45˚ 2-8Ma 45˚ Vassallo et al., EPSL, en révision Mesozoic uplifted peneplain 85˚ 90˚ 95˚ 100˚ 105˚ 110˚ 115˚ time (Ma) 200 150 100 50 82 Altitude : 1950 m IB03-1 Central age : 139 +/- 15 Ma 20 Mean track length : 11.1 +/- 0.2 μm Std dev : 2.0 μm 40 t e 60 m PAZ p e ra t 80 u re ( ° 100 C ) 20 N=100 15 120 3D view of the Ih Bogd massif N Sketch map of the Gurvan Bogd system along the left-lateral Bogd strike-slip fault, Gobi-Altay mountain 10 on SPOT image 5 140 0 range, Mongolia (modified after Ritz et al. 2003) 0510 15 μ Track length ( m) 160 Modelling of the cooling path of the Ih Bogd massif using Fission Track data. These results show that the N S onset of the uplift is comprised between 8 and 2 Ma ago 1675 SW NE T1 A 1650 T2 surface F3 1625 T3 main incision T4 1600 altitude (m) Δh=10.0± 0.5 m T4 1575 Bogd fault 1550 1525 frontal thrust F3 A' 0 500 1000 1500 2000 distance (m) Digital elevation model of the Bitut valley at the outlet of the valley, Topographic profile A-A' across the reverse fault scarp on the alluvial fan F3, Photograph of the strath terraces affected by the left-lateral strike- with the localization of the base level of terraces T1,T2 and T3 showing a vertical offset of 10.0 ± 0.5 m slip fault segment of the Bogd fault at the outlet of the Bitut valley N S W E E W F4 T2 strath terrace F3 A' R T2 T3 Bogd(-1) fault bedrock A Bogd Fault T3 T4 Bogd(-1) fault h ~10 m T4 T1 T3 T4 T2 25 ± 2m P0 ver i r ut t i B Photograph of the Bitut valley showing the Photograph of the canyon carved into Vertical offset of ~10 m of the base level of the progressive downstream filling of the canyon by the bedrock under terrace T4 alluvial terrace T2 along the Bogd(-1) fault present river sediments. The canyon completely Surface Sample P0 (at/g/yr) 10Be (Mat/g) Uncertainty (Mat/g) T1(outlet) MO-03-01 20.5 1.35E+06 1.22E+05 disappears at the level of the Bogd(-1) fault T1(outlet) MO-03-02 20.5 1.30E+06 1.01E+05 T1(outlet) MO-03-03 20.5 1.51E+06 1.65E+05 Bogd(-1) Fault T1(outlet) MO-03-04 20.5 1.62E+06 1.34E+05 T1(outlet) MO-03-05 20.5 1.13E+06 8.41E+04 T1 weighted mean 20.5 1309304 50035 T2(outlet) MO-03-07 20.1 2.08E+06 1.17E+05 3957 m T2(outlet) MO-03-10* 20.1 1.23E+06 7.38E+04 N Mat/g T2(outlet) MO-03-11 20.1 1.75E+06 1.08E+05 T2(outlet) MO-03-12 20.1 1.87E+06 2.29E+05 <0,05 T2 (profile) MO-03-T2-TOP 20.1 1.69E+06 1.47E+05 T2 (profile) MO-03-T2-40 20.1 1.09E+06 1.39E+05 0,05-0,15 T2 (profile) MO-03-T2-60 20.1 8.22E+05 1.66E+05 2km T2 (profile) MO-03-T2-125 20.1 3.39E+05 5.21E+04 0,15-0,40 T2 (profile) MO-03-T2-160 20.1 4.29E+05 9.93E+04 0,40-0,80 T2 (profile) MO-03-T2-200 20.1 1.33E+05 3.08E+04 Cartography of the fault segments and of the alluvial surfaces along the Bitut valley T2 weighted mean 20.1 1899054 74947 0,80-1,40 N T3 (outlet) MO-03-14* 19.4 7.95E+05 8.01E+04 on aerial 1/35000 Russian photographs of 1958 T3 (outlet) MO-03-16 19.4 1.32E+06 1.29E+05 1,40-2,00 T3 (outlet) MO-03-17* 19.4 7.46E+05 2.65E+05 T3 (outlet) MO-03-18 19.4 1.44E+06 9.87E+04 2200 SN>2,00 B T3 (outlet) MO-03-19 19.4 1.21E+06 2.24E+05 T1 T3 (outlet) MO-03-21 19.4 1.27E+06 1.52E+05 T2 2150 T3 T3 (outlet) MO-03-22 19.4 1.49E+06 1.90E+05 T3 (valley) MO-03-34* 29.4 5.08E+05 4.50E+04 P0 T4 T3 (valley) MO-03-54* 27.3 4.53E+05 8.83E+04 2100 T3 (valley) MO-05-8* 22.5 4.59E+05 6.29E+04 * T3 (valley) MO-05-9* 22.5 8.45E+05 1.26E+05 2050 T3 (profile) MO-03-T3-0 19.4 1.04E+06 1.33E+05 = position of P0 on the 1/100,000 topographic map T3 (profile) MO-03-T3-30 19.4 7.96E+05 6.49E+04 = kinematic GPS data for T1 base level T3 (profile) MO-03-T3-50 19.4 4.63E+05 4.85E+04 2000 B:bedrock;T1,T2,T3,T4:strathterraces T3 (profile) MO-03-T3-75 19.4 2.65E+05 3.29E+04 Bitut river = kinematic GPS data for T2 base level T3 (profile) MO-03-T3-100 19.4 2.04E+05 4.14E+04 = kinematic GPS data for T3 base level Graphical representation of the distribution of the 10Be concentrations within the Bitut valley. 1950 T3 (profile) MO-03-T3-120 19.4 2.37E+05 1.06E+05 * T4 = kinematic GPS data for T4 base level Concentrations of terraces T1, T2 and T3 at the boundary of the massif, as well as the T3 weighted mean 19.4 1367828 48532 *= kinematic GPS data for the Bitut river T4(outlet) MO-03-29* 19.4 4.47E+06 3.18E+05 1900 concentration of the bedrock profile at the core of the massif, are weighted means T4(outlet) MO-03-30 (T) 19.4 1.68E+05 3.39E+04 altitude (m) * T3 T4(outlet) MO-03-31 (B) 19.4 1.93E+05 3.10E+04 1850 Bogd(-1) fault T4(outlet) MO-03-32 19.4 3.05E+05 3.16E+04 10Be Concentration (at/g) T2 T4(outlet) MO-03-35* (T) 19.4 7.58E+05 2.69E+05 * 0.0E+00 5.0E+05 1.0E+06 1.5E+06 2.0E+06 0 T4(outlet) MO-03-36 (B) 19.4 1.52E+05 2.34E+04 1800 20 T4 (valley) MO-03-46 25.0 1.06E+05 6.12E+04 * 40 T4 (valley) MO-03-47 25.0 2.85E+05 2.96E+04 1750 60 T4 (valley) MO-03-48 25.0 4.02E+05 5.17E+04 * T1 T4 (valley) MO-03-49 25.0 2.52E+05 8.94E+04 80 1700 * 100 T4 (valley) MO-03-50 25.0 1.77E+05 3.99E+04 * T4 (valley) MO-03-51 (T) 25.0 1.16E+05 2.00E+04 * 120 * Depth (cm) T4 (valley) MO-03-55 (B) 25.0 1.78E+05 1.87E+04 Bogd fault * frontal thrust 140 1650 * T4 weighted mean 25.0 188686 8882 * 160 bedrock T4 MO05-1 25.9 21169 5330 * 180 1600 bedrock T4 MO05-2 25.9 19832 5334 200 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 T2 bedrock T4 MO05-3 25.9 11240 4262 220 bedrock T4 MO05-4 25.9 6852 3432 distance (m) bedrock T4 weighted mean 25.9 12566 2181 Longitudinal profiles of the base levels of the strath terraces along the Bitut river, Boulder embedded in an alluvial surface with erosion of the sandy Results of the 10Be analysis obtained from kinematic GPS data and 1/100,000 Russian topographic map matrix by wind deflation, and depth profile of the 10Be distribution within a 2 m pit-soil in terrace T2 t0 ~600 ka S N Gurvan Bulag thrust fault Summit plateau Bitut river Bogd fault Bogd(-1) fault 4000 m P0 position of 3000 m the theoretical riverbed P0 2000 m STUDY AREA 1km 1000 m 0 t1 ~330 ka 0 5km 10 km Metabasite Quartz-diorite Granite Metasediment (micaschist and marble) Orthogneiss Basalt T1 Gneiss Migmatite Conglomerate P0 Alluvial fans Major fault with pre- Major fault with cenozoic and cenozoic only pre-cenozoic activity activity SNAB t2 ~230 ka 5 ± 3Ma 1 N Bogd fault T1 T2 A P0 20 km 2 t3T3 ~110 ka T1 T2 P0 3 t4 0-5 ka Present T1 4 Bogd(-1) fault Sketch of the evolution of the morphology of the Bitut valley over the Upper Pleistocene - Holocene.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    1 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us