Thermodynamic Potentials and Natural Variables

Thermodynamic Potentials and Natural Variables

<p>Revista Brasileira de Ensino de Física, vol. 42, e20190127 (2020) </p><p><a href="/goto?url=http://www.scielo.br/rbef" target="_blank">www.scielo.br/rbef </a></p><p><a href="/goto?url=http://dx.doi.org/10.1590/1806-9126-RBEF-2019-0127" target="_blank">DOI: http://dx.doi.org/10.1590/1806-9126-RBEF-2019-0127 </a><br>Articles </p><p>cb </p><p>Licença Creative Commons </p><p><strong>Thermodynamic Potentials and Natural Variables </strong></p><p>M. Amaku<sup style="top: -0.3615em;">1,2<a href="/goto?url=http://orcid.org/0000-0003-4752-6774" target="_blank"></a></sup>, F. A. B. Coutinho<sup style="top: -0.3615em;">*1</sup>, L. N. Oliveira<sup style="top: -0.3615em;">3<a href="/goto?url=http://orcid.org/0000-0002-4633-196X" target="_blank"> </a></sup></p><p><sup style="top: -0.3174em;">1</sup>Universidade de São Paulo, Faculdade de Medicina, São Paulo, SP, Brasil <br><sup style="top: -0.3174em;">2</sup>Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, São Paulo, SP, Brasil <br><sup style="top: -0.3174em;">3</sup>Universidade de São Paulo, Instituto de Física de São Carlos, São Carlos, SP, Brasil </p><p>Received on May 30, 2019. Revised on September 13, 2018. Accepted on October 4, 2019. </p><p>Most books on Thermodynamics explain what thermodynamic potentials are and how conveniently they describe </p><p>the properties of physical systems. Certain books add that, to be useful, the thermodynamic potentials must be expressed in their “natural variables”. Here we show that, given a set of physical variables, an appropriate </p><p>thermodynamic potential can always be defined, which contains all the thermodynamic information about the </p><p>system. We adopt various perspectives to discuss this point, which to the best of our knowledge has not been </p><p>clearly presented in the literature. <strong>Keywords: </strong>Thermodynamic Potentials, natural variables, Legendre transforms. </p><p><strong>1. Introduction </strong></p><p>same statement cannot be applied to the temperature. In real fluids, even in simple ones, the proportionality </p><p>Basic concepts are most easily understood when we dis- </p><p>cuss simple systems. Consider an ideal gas in a cylinder. </p><p>The cylinder is closed, its walls are conducting, and a </p><p>fluid at fixed temperature </p><p>contains a fixed number </p><p>nonetheless be varied, by means of a plunger. We push </p><p>the plunger and do work on the gas. Heat flows out to maintain the gas at the temperature <em>T</em>. If, instead, we </p><p>slowly pull out the plunger, heats flows inwards. </p><p>In experiments, the pressure </p><p>can be controlled, and the fluid temperature </p><p>be controlled. The variables&nbsp;and </p><p>dent. It has been known for centuries that this system approximately obeys an <em>equation of state</em>, which binds </p><p>the three variables: </p><p>to </p><p><em>T</em></p><p>is washed out, and the Internal Energy is more </p><p>conveniently expressed as a function of the entropy and </p><p>volume: <em>U </em>= <em>U</em>(<em>S, V </em>). <br><em>T</em></p><p>surrounds it. The cylinder </p><p>Experimentalists frown at this dependence, for en- </p><p>tropies are more difficult to measure than temperatures. </p><p>Moreover, they may have to let the plunger move back </p><p>and forth and adjust the cylinder pressure to that of the </p><p>environment. They would therefore prefer the variables </p><p><em>P </em>and <em>T</em>, instead of <em>S </em>and <em>V </em>. <br><em>N</em></p><p>of particles. Its volume&nbsp;can </p><p><em>V</em><br><em>P</em></p><p>applied to the plunger </p><p>can also </p><p>are not indepen- <br>At this point, it would seem natural to say “Very well, </p><p>let us make the experimentalist happy. Determine the </p><p><em>T</em><br><em>P</em></p><p>,</p><p></p><ul style="display: flex;"><li style="flex:1"><em>T</em></li><li style="flex:1"><em>V</em></li></ul><p></p><p>entropy and volume as functions of </p><p><em>T</em></p><p>and </p><p>, all we have to do, then, </p><p>(<em>T, P</em>) for and&nbsp;. The </p><p><em>T, P</em>)], which expresses&nbsp;as </p><p><em>P</em></p><p>. Since </p><p><em>U</em></p><p>is </p><p>known as a function of </p><p>is to substitute <em>S</em>(<em>T, P</em>) and result will be&nbsp;<em>T, P &nbsp; , V </em></p><p>a function of <em>T </em>and <em>P</em>.” </p><p><em>S</em></p><p>and </p><p><em>V</em></p><ul style="display: flex;"><li style="flex:1"><em>V</em></li><li style="flex:1"><em>S</em></li><li style="flex:1"><em>V</em></li></ul><p><em>U</em></p><p>[</p><p><em>S</em></p><p></p><ul style="display: flex;"><li style="flex:1">(</li><li style="flex:1">)</li><li style="flex:1">(</li></ul><p></p><p><em>U</em><br><em>PV </em>= <em>N k</em><sub style="top: 0.1246em;"><em>B</em></sub><em>T, </em></p><p>(1) </p><p>But then we would be at odds with good textbooks, which prefer to define another extensive quantity, on equal footing with the internal energy: the <em>Gibbs Free Energy G</em>(<em>T, P</em>), a function of the experimentalist’s fa- </p><p>vorite variables. The Internal Energy and the Gibbs Free </p><p>Energy are <em>thermodynamic potentials</em>. As we shall see, a </p><p>where <em>k</em><sub style="top: 0.1246em;"><em>B </em></sub>is Boltzmann’s constant. </p><p>One might think that Eq. (1) is all we need to describe the ideal gas. The equation of state, nonetheless, tells us </p><p>nothing about other important properties of the system. </p><p>The <em>Internal Energy </em></p><p><em>U</em></p><p>rises or drops as the temperature simple expression relates </p><p>Free Energy&nbsp;must be expressed as a function of and <em>P</em>, just like the Free Energy&nbsp;must be expressed as a function of&nbsp;and .&nbsp;The temperature&nbsp;and the </p><p><em>G</em></p><p>(</p><p><em>T, P</em>) to <br><em>U</em><br>(<em>S, V </em>). The Gibbs </p><p>changes. We might also be interested in the <em>entropy </em></p><p><em>S</em></p><p>,</p><p></p><ul style="display: flex;"><li style="flex:1"><em>G</em></li><li style="flex:1"><em>T</em></li></ul><p></p><p>and so forth. </p><p><em>U</em></p><p>The ideal gas is a mathematical concept: a collection </p><p>of particles moving independently from each other and </p><p>bouncing elastically off the cylinder walls. The simple dy- </p><p></p><ul style="display: flex;"><li style="flex:1"><em>S</em></li><li style="flex:1"><em>V</em></li><li style="flex:1"><em>T</em></li></ul><p></p><p>pressure </p><p><em>P</em></p><p>are called the <em>natural variables </em>of <em>G</em>. The </p><p>natural variables of <em>U </em>are <em>S </em>and <em>V </em>. </p><p>namics makes </p><p><em>U</em></p><p>directly proportional to the temperature </p><p>Once again, our inner voice interrupts the train of </p><p>thoughts to argue in favor of the experimentalist: “This </p><p>and number of particles. The proportionality to </p><p><em>N</em></p><p>, a vari- </p><p>able that—except as explicitly indicated—we will keep </p><p>fixed, is an inherent property of the internal energy. The </p><p>is all very well, but </p><p><em>G</em></p><p>is obtained from </p><p><em>U</em></p><p>. Therefore, in </p><p>order to compute <em>G</em>(<em>T, P</em>), we will first have to express </p><p><sup style="top: -0.2344em;">*</sup>Endereço de correspondência: <a href="mailto:[email protected]" target="_blank">[email protected]. </a></p><p>the entropy and volume as functions of temperature and </p><p>Copyright by Sociedade Brasileira de Física. Printed in Brazil. </p><p></p><ul style="display: flex;"><li style="flex:1">e20190127-2 </li><li style="flex:1">Thermodynamic Potentials and Natural Variables </li></ul><p></p><p>pressure to compute </p><p><em>U</em></p><p>[</p><p><em>S</em></p><p>(</p><p><em>T, P </em></p><p>)</p><p><em>, V </em></p><p>(</p><p><em>T, P</em>)]. Our friend, the </p><p>and the pressure </p><p><em>P </em>= − </p><p>ꢀꢀꢀꢀ</p><p>experimentalist, wants the Internal Energy as a function </p><p><em>∂U</em>(<em>S, V </em>) <br><em>∂V </em><br><em>∂U ∂V </em></p><p>≡ − </p><p><em>.</em></p><p>(4) </p><p>of </p><p><em>T</em></p><p>and </p><p><em>P</em></p><p>. So give her </p><p><em>U</em></p><p>[</p><p><em>S</em></p><p>(</p><p><em>T, P </em></p><p>)</p><p><em>, V </em><br>(<em>T, P</em>)]. Why waste </p><p><em>S</em></p><p>time computing <em>G</em>(<em>T, P</em>)? Who needs the Gibbs Free </p><p>Energy?” </p><p>Here we have adopted the traditional notation [2,&nbsp;4], which explicitly indicates the fixed quantity defining </p><p>the partial derivative. Since we work with fixed number </p><p>of particles, to simplify the notation we have avoided </p><p>Textbooks on Thermodynamics define the thermody- </p><p>namic potentials and associate them with their natural </p><p>variables. A few texts offer indirect answers to the two </p><p>adding a second, redundant subscript </p><p>derivatives. </p><p><em>N</em></p><p>to the partial </p><p>questions we have posed. To explain why </p><p><em>S</em></p><p>and </p><p><em>P</em></p><p>are the </p><p>natural variables of the Enthalpy, Schroeder shows that </p><p>changes in&nbsp;have simple physical interpretation when </p><p>the pressure is held fixed [1]. To explain why&nbsp;and are </p><p></p><ul style="display: flex;"><li style="flex:1">In view of Eq. (3) </li><li style="flex:1">,</li></ul><p></p><p><em>T</em></p><p>and </p><p><em>S</em></p><p>are said to be conjugate and are </p><p>conjugates. In a conjugate pair, one of the variables (&nbsp;or </p><p><em>P</em>) is intensive, independent of the number of particles, </p><p><em>H</em></p><p></p><ul style="display: flex;"><li style="flex:1">variables. Likewise, in view of Eq. (4) </li><li style="flex:1">,</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1"><em>P</em></li><li style="flex:1"><em>V</em></li></ul><p></p><ul style="display: flex;"><li style="flex:1"><em>T</em></li><li style="flex:1"><em>P</em></li></ul><p><em>T</em></p><p>the natural variables of the Gibbs Free Energy, Callen </p><p>shows that, for a system in contact with a pressure and </p><p>a temperature reservoirs, the equilibrium value of any of </p><p>while the other (<em>S </em>or </p><p><em>V</em></p><p>) grows in proportion to the </p><p>number of particles and is, hence, extensive. </p><p>The dependence on extensive variables makes </p><p>its internal parameters will minimize </p><p><em>G</em></p><p>at the reservoir </p><p><em>U</em></p><p>some- </p><p>pressure and temperature [2]. Callen also explains that </p><p>information is lost when a thermodynamic potential is </p><p>expressed not as a function of its natural variables, but </p><p>as a function of its derivative with respect to those vari- </p><p>ables [2]. To prop up the argument, the author presents a </p><p>geometrical depiction of this problem and of its solution </p><p>by means of Lagrange Transformations. This explanation </p><p>pleases experienced teachers. To the same extent, it dis- </p><p>appoints the students, who often regard the illustration </p><p>as an abstract solution to an abstruse conundrum. </p><p>The purpose of this paper is to answer the two questions directly, in a physical setting, that is, to explain why it is better to work with <em>G</em>(<em>T, P</em>) </p><p>what special among the thermodynamic potentials. That </p><p>the Internal Energy is a (single-valued) convex function </p><p>of all its natural variables, </p><p><em>S</em></p><p>and </p><p><em>V</em></p><p>, was first pointed </p><p></p><ul style="display: flex;"><li style="flex:1">and are </li><li style="flex:1">out by Gibbs. Given the convexity and that </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1"><em>S</em></li><li style="flex:1"><em>V</em></li></ul><p></p><p>extensive, it is a simple matter to derive the Second Law </p><p>of Thermodynamics, as recalled by Wightman, in a re- </p><p>markably clear, succinct account of Gibbs’s reasoning [5]. </p><p>The other thermodynamic potentials cannot be directly </p><p>related to the Second Law because they depend on one or more intensive variables; while they are convex functions </p><p>of the extensive variables, they are concave function of </p><p>the intensive ones [2]. </p><p>Nonetheless, practical considerations often focus one’s </p><p>interest on intensive variables. One must then turn to than with </p><p><em>U</em></p><p>[</p><p><em>S</em>(<em>T, P</em>)<em>, V </em>(<em>T, P</em>)]. We will show that </p><ul style="display: flex;"><li style="flex:1"><em>U</em>[<em>T, P</em>] ≡ <em>U </em></li><li style="flex:1">[<em>S</em>(<em>T, P</em>)<em>, V </em>(<em>T, P</em>)] conveys less information </li></ul><p></p><p>thermodynamic potentials other than </p><p><em>U</em><br>(<em>S, V </em>). We have than <em>U</em>(<em>S, V </em>), or <em>G</em>(<em>T, P</em>). In order to preserve informa- </p><p>tion, we have to express each thermodynamic potential </p><p>as a function of its natural variables. Conversely, the vari- </p><p>ables of interest uniquely determine the thermodynamic </p><p>potential. In our example, the experimentalist would like </p><p>to work with </p><p>not for <em>U</em>(<em>T, P</em>). </p><p>already discussed one of them, the Gibbs Free Energy </p><p><em>G</em></p><p>(</p><p><em>T, P</em>). Since we have four variables ( </p><p><em>S</em></p><p>,</p><p><em>V</em></p><p>,</p><p><em>T</em></p><p>, and </p><p><em>P</em></p><p>), </p><p>there must be more than two thermodynamic potentials, </p><p>and can ask for the number of alternatives. </p><p>As illustrated by Eq. (2), the differential of a thermo- </p><p>dynamic potential is a linear combination comprising the differentials of its natural variables; the linear coefficients </p><p>are the conjugates to the natural variables. Out of the </p><p>two conjugate pairs (<em>S, T</em>) and (<em>V, P</em>), we can construct </p><p><em>T</em></p><p>and </p><p><em>P</em></p><p>. She should then ask for </p><p><em>G</em><br>(<em>T, P</em>), </p><p><strong>2. Four thermodynamic potentials </strong></p><p>four pairs of natural variables: (i) </p><p><em>S</em></p><p>and </p><p><em>V</em></p><p>, (ii) </p><p><em>S</em></p><p>and </p><p><em>P</em></p><p>,</p><p>As explained in Sec. 1, four physical variables are associated with the gas in the cylinder:&nbsp;<em>S</em>, and </p><p>When these variables are increased or reduced, the ther- </p><p>modynamic potentials&nbsp;and change.&nbsp;The changes <em>dU </em></p><p>in the Internal Energy are especially simple to describe, </p><p>since the First Law of Thermodynamics states that any </p><p><em>dU </em>is a linear combination of the changes in its natural </p><p>variables [3], </p><p>(iii) and&nbsp;, and (iv)&nbsp;and </p><p></p><ul style="display: flex;"><li style="flex:1"><em>T</em></li><li style="flex:1"><em>V</em></li><li style="flex:1"><em>T</em></li><li style="flex:1"><em>P</em></li></ul><p></p><p>. We have, therefore, four </p><p><em>T</em></p><p>,</p><p><em>P</em></p><p>,</p><p><em>V</em></p><p>.</p><p>thermodynamic potentials. Two of them were introduced </p><p>in Sec. 1. The other two are the <em>Helmoltz free energy </em></p><p><em>F</em>(<em>T, V </em>) and the <em>enthalpy H</em>(<em>S, P</em>). </p><ul style="display: flex;"><li style="flex:1"><em>U</em></li><li style="flex:1"><em>G</em></li></ul><p></p><p><strong>2.1. Expressions for the four thermodynamical potentials </strong></p><p>We now describe the schematic procedure determining each of the thermodynamic potentials in Table 1. The </p><p>procedure is schematic because it does not explain how </p><p>the resulting quantities can be expressed as functions of the pertinent natural variables, a task discussed in </p><p>Sec. 2.2. </p><p><em>dU </em>= <em>T d S </em>− <em>P d V, </em></p><p>(2) with linear coefficients <em>T </em>and <em>P</em>. <br>Given <em>U</em>(<em>S, V </em>), Eq. (2) yields the temperature </p><p>ꢀꢀ</p><p><em>∂U</em>(<em>S, V </em>) <br><em>∂S </em><br><em>∂U ∂S </em></p><p>ꢀꢀ</p><p>Consider the Helmholtz Free Energy, the thermody- </p><p><em>T </em>= </p><p>≡</p><p><em>,</em></p><p>(3) </p><p><em>V</em></p><p>namic potential whose natural variables are </p><p><em>T</em></p><p>and </p><p><em>V</em></p><p>. Our </p><p></p><ul style="display: flex;"><li style="flex:1">Revista Brasileira de Ensino de Física, vol. 42, e20190127, 2020 </li><li style="flex:1"><a href="/goto?url=http://dx.doi.org/10.1590/1806-9126-RBEF-2019-0127" target="_blank">DOI: http://dx.doi.org/10.1590/1806-9126-RBEF-2019-0127 </a></li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Amaku et al. </li><li style="flex:1">e20190127-3 </li></ul><p></p><p>analysis starts with the First Law of Thermodynamics, </p><p>Eq. (2), which expresses changes in the Internal Energy </p><p>Substitution of the right-hand side of Eq. (2) for <em>dU </em></p><p>on the right-hand side of Eq. (11) then shows that </p><p>as a linear combination of the changes in </p><p><em>T</em></p><p>and </p><p><em>V</em></p><p>. We </p><p><em>dG </em>= −<em>SdT </em>+ <em>V dP. </em></p><p>(13) </p><p>want to substitute the variable </p><p><em>T</em></p><p>for </p><p><em>S</em></p><p>. To this end, we </p><p>subtract <em>d</em>(<em>T S</em>) from the right-hand side of Eq. (2), to </p><p>As we have already pointed out, these manipulations </p><p>show that </p><p>are schematic. To make the equalities for&nbsp;<em>H</em>, and </p><p>practical, we must express the right-hand sides of Eqs. (6) (9), and (12) as functions of the natural variables (<em>T, V </em>), </p><p><em>F</em></p><p>,</p><p><em>G</em></p><p>,</p><p><em>dF </em>= <em>dU </em>− <em>d</em>(<em>T S</em>)<em>, </em></p><p>(5) </p><p>from which we obtain an expression for the Helmholtz </p><p>Free Energy: </p><p>(</p><p><em>S, P</em>), and (<em>T, P</em>), respectively. Section 2.2 explains how </p><p>this can be done. </p><p><em>F </em>= <em>U </em>− <em>T S . </em></p><p>Moreover, from Eqs. (2) and (5), it follows that </p><p><em>dF </em>= −<em>SdT </em>− <em>P d V, </em></p><p>(6) </p><p><strong>2.2. Expression of the four thermodynamical potentials as functions of their natural variables. </strong></p><p>(7) </p><p>Consider, as an example, the expression for the Helmholtz </p><p>Free Energy derived in Sec. 2.1, Eq. (6). The first term </p><p>on the right-hand side, <em>U</em>, is known as a function of </p><p>the entropy and volume. Since we are interested in the </p><p>which expresses changes in the Free Energy as a linear combination of the changes in its natural variables, </p><p><em>T</em>and <em>V </em>. </p><p>Free Energy, we want to express </p><p><em>U</em></p><p>, and also the entropy, <br>Next, we want to calculate the Enthalpy, </p><p><em>H</em></p><p>=</p><p><em>H</em><br>(<em>S, P</em>). </p><p>which is a factor in the last term on the right-hand side, </p><p>We want, therefore, to substitute a term proportional to </p><p><em>dP </em>for the term proportional to <em>dV </em>on the right-hand </p><p>side of Eq. (2). We then write </p><p>as functions of </p><p>our problem: </p><p><em>T</em></p><p>and </p><p><em>V</em></p><p>. The following sequence solves </p><p></p><ul style="display: flex;"><li style="flex:1">ꢁ</li><li style="flex:1">ꢂ</li></ul><p></p><p><em>∂U ∂S dH </em>= <em>dU </em>+ <em>d</em>(<em>P V </em>)<em>, </em></p><p>(8) </p><p><strong>Step 1 </strong>From <em>T </em>= </p><p>, find <em>T </em>= <em>T</em>(<em>S, V </em>); </p><p><strong>Step 2 </strong>Invert the express<sup style="top: -0.6774em;"><em>V</em></sup>ion obtained in Step 1 to find </p><p><em>S </em>= <em>S</em>(<em>T, V </em>); </p><p>which shows that </p><p><em>H </em>= <em>U </em>+ <em>P V. </em></p><p>(9) <br><strong>Step 3 </strong>Substitute <em>S</em>(<em>T, V </em>) for <em>S </em>on the right-hand side </p><p>of Eq. (6) to find <em>F</em>(<em>T, V </em>). </p><p>Equalities such as Eq. (8) have simple physical inter- </p><p>pretations. An Enthalpy change ∆ at constant pressure </p><p>is the sum of the associated internal-energy change ∆<em>U </em></p><p>with the work&nbsp;that must be done on the surroundings to vacate the volume ∆ </p><p><em>H</em></p><p>As we shall see in Sec. 4.2, no information is lost in this </p><p>procedure. Equation (6), which defines the Helmholtz Free Energy, is a Legendre Transformation, a procedure designed to ensure that the resulting potential </p><p><em>P</em></p><p>∆</p><p><em>V</em><br><em>V</em></p><p>. One can likewise interpret all the other thermodynamics potentials, as explained by </p><p>Schroeder [1]. </p><p></p><ul style="display: flex;"><li style="flex:1">[</li><li style="flex:1"><em>F</em>(<em>T, V </em>)] contain the same information as the original </li></ul><p></p><p>one [<em>U</em>(<em>S, V </em>)]. </p><p>From the practical viewpoint, it is more important to </p><p>express the changes in the Entropy as a linear combi- </p><p>Analogous algebra reduces Eq. (9) to an expression for </p><p><em>H</em></p><p>(</p><p><em>S, P</em>), and Eq. (12) to an expression for </p><p><em>G</em><br>(<em>T, P</em>). For </p><p>nation of the changes in its natural variables, </p><p><em>S</em></p><p>and </p><p><em>P</em></p><p>.</p><p>a more detailed presentation, see Zia et al. [6]. </p><p>With this goal in mind, we substitute the right-hand side of Eq. (2) for <em>dU </em>on the right-hand side of Eq. (8), which </p><p>yields the expression </p><p>The left-hand column of Table 1 collects the central </p><p>results inSec. 2.1. For each thermodynamic potential </p><p><em>U</em></p><p>,</p><p><em>F</em></p><p>,</p><p><em>H</em></p><p>, and </p><p><em>G</em></p><p>, the right-hand column presents the expres- </p><p>sions for the two conjugate variables directly obtained </p><p>from Eqs. (2), (7), (10), and (13), respectively. </p><p><em>dH </em>= <em>T d S </em>+ <em>V dP. </em></p><p>(10) </p><p>Experimentalists find Eq. (10) very convenient. Work- </p><p>ing at fixed pressure, they only have to measure the heat </p><p><strong>3. Multiplicity of the thermodynamic potentials </strong></p><p><em>dQ </em></p><p>=</p><p><em>T d S </em>that is exchanged with the environment to </p><p>determine the change in Enthalpy. </p><p>Finally, to determine the Gibbs Free Energy </p><p><em>G</em><br>(<em>T, P</em>), </p><p>Equation (2) covers systems with only two degrees of </p><p>freedom. It suits the gas in our cylinder well, which can </p><p>be described by two independent intensive variables: the </p><p>we add </p><p><em>d</em></p><p>(</p><p><em>PV </em>) to and subtract </p><p><em>d</em><br>(<em>T S</em>) from the right-hand </p><p>side of Eq. (2): </p><p>temperature </p><p><em>T</em></p><p>and pressure </p><p>most general situation. </p><p><em>P</em></p><p>. This, however, is not the </p><p><em>dG </em>= <em>dU </em>− <em>d</em>(<em>T S</em>) + <em>d</em>(<em>P V </em>)<em>, </em></p><p>which shows that <br>(11) (12) </p><p>Consider, for instance, instead of the gas in the cylinder, </p><p>a stretchable wire. Its volume can be varied and hence </p><p><em>G </em>= <em>U </em>− <em>T S </em>+ <em>P V. </em></p><p>defines an additional degree of freedom. Let </p><p><em>X</em></p><p>=</p><p><em>L </em>− <em>L </em></p><p>0</p><p></p><ul style="display: flex;"><li style="flex:1"><a href="/goto?url=http://dx.doi.org/10.1590/1806-9126-RBEF-2019-0127" target="_blank">DOI: http://dx.doi.org/10.1590/1806-9126-RBEF-2019-0127 </a></li><li style="flex:1">Revista Brasileira de Ensino de Física, vol. 42, e20190127, 2020 </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">e20190127-4 </li><li style="flex:1">Thermodynamic Potentials and Natural Variables </li></ul><p></p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    10 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us