
<p>Revista Brasileira de Ensino de Física, vol. 42, e20190127 (2020) </p><p><a href="/goto?url=http://www.scielo.br/rbef" target="_blank">www.scielo.br/rbef </a></p><p><a href="/goto?url=http://dx.doi.org/10.1590/1806-9126-RBEF-2019-0127" target="_blank">DOI: http://dx.doi.org/10.1590/1806-9126-RBEF-2019-0127 </a><br>Articles </p><p>cb </p><p>Licença Creative Commons </p><p><strong>Thermodynamic Potentials and Natural Variables </strong></p><p>M. Amaku<sup style="top: -0.3615em;">1,2<a href="/goto?url=http://orcid.org/0000-0003-4752-6774" target="_blank"></a></sup>, F. A. B. Coutinho<sup style="top: -0.3615em;">*1</sup>, L. N. Oliveira<sup style="top: -0.3615em;">3<a href="/goto?url=http://orcid.org/0000-0002-4633-196X" target="_blank"> </a></sup></p><p><sup style="top: -0.3174em;">1</sup>Universidade de São Paulo, Faculdade de Medicina, São Paulo, SP, Brasil <br><sup style="top: -0.3174em;">2</sup>Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, São Paulo, SP, Brasil <br><sup style="top: -0.3174em;">3</sup>Universidade de São Paulo, Instituto de Física de São Carlos, São Carlos, SP, Brasil </p><p>Received on May 30, 2019. Revised on September 13, 2018. Accepted on October 4, 2019. </p><p>Most books on Thermodynamics explain what thermodynamic potentials are and how conveniently they describe </p><p>the properties of physical systems. Certain books add that, to be useful, the thermodynamic potentials must be expressed in their “natural variables”. Here we show that, given a set of physical variables, an appropriate </p><p>thermodynamic potential can always be defined, which contains all the thermodynamic information about the </p><p>system. We adopt various perspectives to discuss this point, which to the best of our knowledge has not been </p><p>clearly presented in the literature. <strong>Keywords: </strong>Thermodynamic Potentials, natural variables, Legendre transforms. </p><p><strong>1. Introduction </strong></p><p>same statement cannot be applied to the temperature. In real fluids, even in simple ones, the proportionality </p><p>Basic concepts are most easily understood when we dis- </p><p>cuss simple systems. Consider an ideal gas in a cylinder. </p><p>The cylinder is closed, its walls are conducting, and a </p><p>fluid at fixed temperature </p><p>contains a fixed number </p><p>nonetheless be varied, by means of a plunger. We push </p><p>the plunger and do work on the gas. Heat flows out to maintain the gas at the temperature <em>T</em>. If, instead, we </p><p>slowly pull out the plunger, heats flows inwards. </p><p>In experiments, the pressure </p><p>can be controlled, and the fluid temperature </p><p>be controlled. The variables and </p><p>dent. It has been known for centuries that this system approximately obeys an <em>equation of state</em>, which binds </p><p>the three variables: </p><p>to </p><p><em>T</em></p><p>is washed out, and the Internal Energy is more </p><p>conveniently expressed as a function of the entropy and </p><p>volume: <em>U </em>= <em>U</em>(<em>S, V </em>). <br><em>T</em></p><p>surrounds it. The cylinder </p><p>Experimentalists frown at this dependence, for en- </p><p>tropies are more difficult to measure than temperatures. </p><p>Moreover, they may have to let the plunger move back </p><p>and forth and adjust the cylinder pressure to that of the </p><p>environment. They would therefore prefer the variables </p><p><em>P </em>and <em>T</em>, instead of <em>S </em>and <em>V </em>. <br><em>N</em></p><p>of particles. Its volume can </p><p><em>V</em><br><em>P</em></p><p>applied to the plunger </p><p>can also </p><p>are not indepen- <br>At this point, it would seem natural to say “Very well, </p><p>let us make the experimentalist happy. Determine the </p><p><em>T</em><br><em>P</em></p><p>,</p><p></p><ul style="display: flex;"><li style="flex:1"><em>T</em></li><li style="flex:1"><em>V</em></li></ul><p></p><p>entropy and volume as functions of </p><p><em>T</em></p><p>and </p><p>, all we have to do, then, </p><p>(<em>T, P</em>) for and . The </p><p><em>T, P</em>)], which expresses as </p><p><em>P</em></p><p>. Since </p><p><em>U</em></p><p>is </p><p>known as a function of </p><p>is to substitute <em>S</em>(<em>T, P</em>) and result will be <em>T, P , V </em></p><p>a function of <em>T </em>and <em>P</em>.” </p><p><em>S</em></p><p>and </p><p><em>V</em></p><ul style="display: flex;"><li style="flex:1"><em>V</em></li><li style="flex:1"><em>S</em></li><li style="flex:1"><em>V</em></li></ul><p><em>U</em></p><p>[</p><p><em>S</em></p><p></p><ul style="display: flex;"><li style="flex:1">(</li><li style="flex:1">)</li><li style="flex:1">(</li></ul><p></p><p><em>U</em><br><em>PV </em>= <em>N k</em><sub style="top: 0.1246em;"><em>B</em></sub><em>T, </em></p><p>(1) </p><p>But then we would be at odds with good textbooks, which prefer to define another extensive quantity, on equal footing with the internal energy: the <em>Gibbs Free Energy G</em>(<em>T, P</em>), a function of the experimentalist’s fa- </p><p>vorite variables. The Internal Energy and the Gibbs Free </p><p>Energy are <em>thermodynamic potentials</em>. As we shall see, a </p><p>where <em>k</em><sub style="top: 0.1246em;"><em>B </em></sub>is Boltzmann’s constant. </p><p>One might think that Eq. (1) is all we need to describe the ideal gas. The equation of state, nonetheless, tells us </p><p>nothing about other important properties of the system. </p><p>The <em>Internal Energy </em></p><p><em>U</em></p><p>rises or drops as the temperature simple expression relates </p><p>Free Energy must be expressed as a function of and <em>P</em>, just like the Free Energy must be expressed as a function of and . The temperature and the </p><p><em>G</em></p><p>(</p><p><em>T, P</em>) to <br><em>U</em><br>(<em>S, V </em>). The Gibbs </p><p>changes. We might also be interested in the <em>entropy </em></p><p><em>S</em></p><p>,</p><p></p><ul style="display: flex;"><li style="flex:1"><em>G</em></li><li style="flex:1"><em>T</em></li></ul><p></p><p>and so forth. </p><p><em>U</em></p><p>The ideal gas is a mathematical concept: a collection </p><p>of particles moving independently from each other and </p><p>bouncing elastically off the cylinder walls. The simple dy- </p><p></p><ul style="display: flex;"><li style="flex:1"><em>S</em></li><li style="flex:1"><em>V</em></li><li style="flex:1"><em>T</em></li></ul><p></p><p>pressure </p><p><em>P</em></p><p>are called the <em>natural variables </em>of <em>G</em>. The </p><p>natural variables of <em>U </em>are <em>S </em>and <em>V </em>. </p><p>namics makes </p><p><em>U</em></p><p>directly proportional to the temperature </p><p>Once again, our inner voice interrupts the train of </p><p>thoughts to argue in favor of the experimentalist: “This </p><p>and number of particles. The proportionality to </p><p><em>N</em></p><p>, a vari- </p><p>able that—except as explicitly indicated—we will keep </p><p>fixed, is an inherent property of the internal energy. The </p><p>is all very well, but </p><p><em>G</em></p><p>is obtained from </p><p><em>U</em></p><p>. Therefore, in </p><p>order to compute <em>G</em>(<em>T, P</em>), we will first have to express </p><p><sup style="top: -0.2344em;">*</sup>Endereço de correspondência: <a href="mailto:[email protected]" target="_blank">[email protected]. </a></p><p>the entropy and volume as functions of temperature and </p><p>Copyright by Sociedade Brasileira de Física. Printed in Brazil. </p><p></p><ul style="display: flex;"><li style="flex:1">e20190127-2 </li><li style="flex:1">Thermodynamic Potentials and Natural Variables </li></ul><p></p><p>pressure to compute </p><p><em>U</em></p><p>[</p><p><em>S</em></p><p>(</p><p><em>T, P </em></p><p>)</p><p><em>, V </em></p><p>(</p><p><em>T, P</em>)]. Our friend, the </p><p>and the pressure </p><p><em>P </em>= − </p><p>ꢀꢀꢀꢀ</p><p>experimentalist, wants the Internal Energy as a function </p><p><em>∂U</em>(<em>S, V </em>) <br><em>∂V </em><br><em>∂U ∂V </em></p><p>≡ − </p><p><em>.</em></p><p>(4) </p><p>of </p><p><em>T</em></p><p>and </p><p><em>P</em></p><p>. So give her </p><p><em>U</em></p><p>[</p><p><em>S</em></p><p>(</p><p><em>T, P </em></p><p>)</p><p><em>, V </em><br>(<em>T, P</em>)]. Why waste </p><p><em>S</em></p><p>time computing <em>G</em>(<em>T, P</em>)? Who needs the Gibbs Free </p><p>Energy?” </p><p>Here we have adopted the traditional notation [2, 4], which explicitly indicates the fixed quantity defining </p><p>the partial derivative. Since we work with fixed number </p><p>of particles, to simplify the notation we have avoided </p><p>Textbooks on Thermodynamics define the thermody- </p><p>namic potentials and associate them with their natural </p><p>variables. A few texts offer indirect answers to the two </p><p>adding a second, redundant subscript </p><p>derivatives. </p><p><em>N</em></p><p>to the partial </p><p>questions we have posed. To explain why </p><p><em>S</em></p><p>and </p><p><em>P</em></p><p>are the </p><p>natural variables of the Enthalpy, Schroeder shows that </p><p>changes in have simple physical interpretation when </p><p>the pressure is held fixed [1]. To explain why and are </p><p></p><ul style="display: flex;"><li style="flex:1">In view of Eq. (3) </li><li style="flex:1">,</li></ul><p></p><p><em>T</em></p><p>and </p><p><em>S</em></p><p>are said to be conjugate and are </p><p>conjugates. In a conjugate pair, one of the variables ( or </p><p><em>P</em>) is intensive, independent of the number of particles, </p><p><em>H</em></p><p></p><ul style="display: flex;"><li style="flex:1">variables. Likewise, in view of Eq. (4) </li><li style="flex:1">,</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1"><em>P</em></li><li style="flex:1"><em>V</em></li></ul><p></p><ul style="display: flex;"><li style="flex:1"><em>T</em></li><li style="flex:1"><em>P</em></li></ul><p><em>T</em></p><p>the natural variables of the Gibbs Free Energy, Callen </p><p>shows that, for a system in contact with a pressure and </p><p>a temperature reservoirs, the equilibrium value of any of </p><p>while the other (<em>S </em>or </p><p><em>V</em></p><p>) grows in proportion to the </p><p>number of particles and is, hence, extensive. </p><p>The dependence on extensive variables makes </p><p>its internal parameters will minimize </p><p><em>G</em></p><p>at the reservoir </p><p><em>U</em></p><p>some- </p><p>pressure and temperature [2]. Callen also explains that </p><p>information is lost when a thermodynamic potential is </p><p>expressed not as a function of its natural variables, but </p><p>as a function of its derivative with respect to those vari- </p><p>ables [2]. To prop up the argument, the author presents a </p><p>geometrical depiction of this problem and of its solution </p><p>by means of Lagrange Transformations. This explanation </p><p>pleases experienced teachers. To the same extent, it dis- </p><p>appoints the students, who often regard the illustration </p><p>as an abstract solution to an abstruse conundrum. </p><p>The purpose of this paper is to answer the two questions directly, in a physical setting, that is, to explain why it is better to work with <em>G</em>(<em>T, P</em>) </p><p>what special among the thermodynamic potentials. That </p><p>the Internal Energy is a (single-valued) convex function </p><p>of all its natural variables, </p><p><em>S</em></p><p>and </p><p><em>V</em></p><p>, was first pointed </p><p></p><ul style="display: flex;"><li style="flex:1">and are </li><li style="flex:1">out by Gibbs. Given the convexity and that </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1"><em>S</em></li><li style="flex:1"><em>V</em></li></ul><p></p><p>extensive, it is a simple matter to derive the Second Law </p><p>of Thermodynamics, as recalled by Wightman, in a re- </p><p>markably clear, succinct account of Gibbs’s reasoning [5]. </p><p>The other thermodynamic potentials cannot be directly </p><p>related to the Second Law because they depend on one or more intensive variables; while they are convex functions </p><p>of the extensive variables, they are concave function of </p><p>the intensive ones [2]. </p><p>Nonetheless, practical considerations often focus one’s </p><p>interest on intensive variables. One must then turn to than with </p><p><em>U</em></p><p>[</p><p><em>S</em>(<em>T, P</em>)<em>, V </em>(<em>T, P</em>)]. We will show that </p><ul style="display: flex;"><li style="flex:1"><em>U</em>[<em>T, P</em>] ≡ <em>U </em></li><li style="flex:1">[<em>S</em>(<em>T, P</em>)<em>, V </em>(<em>T, P</em>)] conveys less information </li></ul><p></p><p>thermodynamic potentials other than </p><p><em>U</em><br>(<em>S, V </em>). We have than <em>U</em>(<em>S, V </em>), or <em>G</em>(<em>T, P</em>). In order to preserve informa- </p><p>tion, we have to express each thermodynamic potential </p><p>as a function of its natural variables. Conversely, the vari- </p><p>ables of interest uniquely determine the thermodynamic </p><p>potential. In our example, the experimentalist would like </p><p>to work with </p><p>not for <em>U</em>(<em>T, P</em>). </p><p>already discussed one of them, the Gibbs Free Energy </p><p><em>G</em></p><p>(</p><p><em>T, P</em>). Since we have four variables ( </p><p><em>S</em></p><p>,</p><p><em>V</em></p><p>,</p><p><em>T</em></p><p>, and </p><p><em>P</em></p><p>), </p><p>there must be more than two thermodynamic potentials, </p><p>and can ask for the number of alternatives. </p><p>As illustrated by Eq. (2), the differential of a thermo- </p><p>dynamic potential is a linear combination comprising the differentials of its natural variables; the linear coefficients </p><p>are the conjugates to the natural variables. Out of the </p><p>two conjugate pairs (<em>S, T</em>) and (<em>V, P</em>), we can construct </p><p><em>T</em></p><p>and </p><p><em>P</em></p><p>. She should then ask for </p><p><em>G</em><br>(<em>T, P</em>), </p><p><strong>2. Four thermodynamic potentials </strong></p><p>four pairs of natural variables: (i) </p><p><em>S</em></p><p>and </p><p><em>V</em></p><p>, (ii) </p><p><em>S</em></p><p>and </p><p><em>P</em></p><p>,</p><p>As explained in Sec. 1, four physical variables are associated with the gas in the cylinder: <em>S</em>, and </p><p>When these variables are increased or reduced, the ther- </p><p>modynamic potentials and change. The changes <em>dU </em></p><p>in the Internal Energy are especially simple to describe, </p><p>since the First Law of Thermodynamics states that any </p><p><em>dU </em>is a linear combination of the changes in its natural </p><p>variables [3], </p><p>(iii) and , and (iv) and </p><p></p><ul style="display: flex;"><li style="flex:1"><em>T</em></li><li style="flex:1"><em>V</em></li><li style="flex:1"><em>T</em></li><li style="flex:1"><em>P</em></li></ul><p></p><p>. We have, therefore, four </p><p><em>T</em></p><p>,</p><p><em>P</em></p><p>,</p><p><em>V</em></p><p>.</p><p>thermodynamic potentials. Two of them were introduced </p><p>in Sec. 1. The other two are the <em>Helmoltz free energy </em></p><p><em>F</em>(<em>T, V </em>) and the <em>enthalpy H</em>(<em>S, P</em>). </p><ul style="display: flex;"><li style="flex:1"><em>U</em></li><li style="flex:1"><em>G</em></li></ul><p></p><p><strong>2.1. Expressions for the four thermodynamical potentials </strong></p><p>We now describe the schematic procedure determining each of the thermodynamic potentials in Table 1. The </p><p>procedure is schematic because it does not explain how </p><p>the resulting quantities can be expressed as functions of the pertinent natural variables, a task discussed in </p><p>Sec. 2.2. </p><p><em>dU </em>= <em>T d S </em>− <em>P d V, </em></p><p>(2) with linear coefficients <em>T </em>and <em>P</em>. <br>Given <em>U</em>(<em>S, V </em>), Eq. (2) yields the temperature </p><p>ꢀꢀ</p><p><em>∂U</em>(<em>S, V </em>) <br><em>∂S </em><br><em>∂U ∂S </em></p><p>ꢀꢀ</p><p>Consider the Helmholtz Free Energy, the thermody- </p><p><em>T </em>= </p><p>≡</p><p><em>,</em></p><p>(3) </p><p><em>V</em></p><p>namic potential whose natural variables are </p><p><em>T</em></p><p>and </p><p><em>V</em></p><p>. Our </p><p></p><ul style="display: flex;"><li style="flex:1">Revista Brasileira de Ensino de Física, vol. 42, e20190127, 2020 </li><li style="flex:1"><a href="/goto?url=http://dx.doi.org/10.1590/1806-9126-RBEF-2019-0127" target="_blank">DOI: http://dx.doi.org/10.1590/1806-9126-RBEF-2019-0127 </a></li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Amaku et al. </li><li style="flex:1">e20190127-3 </li></ul><p></p><p>analysis starts with the First Law of Thermodynamics, </p><p>Eq. (2), which expresses changes in the Internal Energy </p><p>Substitution of the right-hand side of Eq. (2) for <em>dU </em></p><p>on the right-hand side of Eq. (11) then shows that </p><p>as a linear combination of the changes in </p><p><em>T</em></p><p>and </p><p><em>V</em></p><p>. We </p><p><em>dG </em>= −<em>SdT </em>+ <em>V dP. </em></p><p>(13) </p><p>want to substitute the variable </p><p><em>T</em></p><p>for </p><p><em>S</em></p><p>. To this end, we </p><p>subtract <em>d</em>(<em>T S</em>) from the right-hand side of Eq. (2), to </p><p>As we have already pointed out, these manipulations </p><p>show that </p><p>are schematic. To make the equalities for <em>H</em>, and </p><p>practical, we must express the right-hand sides of Eqs. (6) (9), and (12) as functions of the natural variables (<em>T, V </em>), </p><p><em>F</em></p><p>,</p><p><em>G</em></p><p>,</p><p><em>dF </em>= <em>dU </em>− <em>d</em>(<em>T S</em>)<em>, </em></p><p>(5) </p><p>from which we obtain an expression for the Helmholtz </p><p>Free Energy: </p><p>(</p><p><em>S, P</em>), and (<em>T, P</em>), respectively. Section 2.2 explains how </p><p>this can be done. </p><p><em>F </em>= <em>U </em>− <em>T S . </em></p><p>Moreover, from Eqs. (2) and (5), it follows that </p><p><em>dF </em>= −<em>SdT </em>− <em>P d V, </em></p><p>(6) </p><p><strong>2.2. Expression of the four thermodynamical potentials as functions of their natural variables. </strong></p><p>(7) </p><p>Consider, as an example, the expression for the Helmholtz </p><p>Free Energy derived in Sec. 2.1, Eq. (6). The first term </p><p>on the right-hand side, <em>U</em>, is known as a function of </p><p>the entropy and volume. Since we are interested in the </p><p>which expresses changes in the Free Energy as a linear combination of the changes in its natural variables, </p><p><em>T</em>and <em>V </em>. </p><p>Free Energy, we want to express </p><p><em>U</em></p><p>, and also the entropy, <br>Next, we want to calculate the Enthalpy, </p><p><em>H</em></p><p>=</p><p><em>H</em><br>(<em>S, P</em>). </p><p>which is a factor in the last term on the right-hand side, </p><p>We want, therefore, to substitute a term proportional to </p><p><em>dP </em>for the term proportional to <em>dV </em>on the right-hand </p><p>side of Eq. (2). We then write </p><p>as functions of </p><p>our problem: </p><p><em>T</em></p><p>and </p><p><em>V</em></p><p>. The following sequence solves </p><p></p><ul style="display: flex;"><li style="flex:1">ꢁ</li><li style="flex:1">ꢂ</li></ul><p></p><p><em>∂U ∂S dH </em>= <em>dU </em>+ <em>d</em>(<em>P V </em>)<em>, </em></p><p>(8) </p><p><strong>Step 1 </strong>From <em>T </em>= </p><p>, find <em>T </em>= <em>T</em>(<em>S, V </em>); </p><p><strong>Step 2 </strong>Invert the express<sup style="top: -0.6774em;"><em>V</em></sup>ion obtained in Step 1 to find </p><p><em>S </em>= <em>S</em>(<em>T, V </em>); </p><p>which shows that </p><p><em>H </em>= <em>U </em>+ <em>P V. </em></p><p>(9) <br><strong>Step 3 </strong>Substitute <em>S</em>(<em>T, V </em>) for <em>S </em>on the right-hand side </p><p>of Eq. (6) to find <em>F</em>(<em>T, V </em>). </p><p>Equalities such as Eq. (8) have simple physical inter- </p><p>pretations. An Enthalpy change ∆ at constant pressure </p><p>is the sum of the associated internal-energy change ∆<em>U </em></p><p>with the work that must be done on the surroundings to vacate the volume ∆ </p><p><em>H</em></p><p>As we shall see in Sec. 4.2, no information is lost in this </p><p>procedure. Equation (6), which defines the Helmholtz Free Energy, is a Legendre Transformation, a procedure designed to ensure that the resulting potential </p><p><em>P</em></p><p>∆</p><p><em>V</em><br><em>V</em></p><p>. One can likewise interpret all the other thermodynamics potentials, as explained by </p><p>Schroeder [1]. </p><p></p><ul style="display: flex;"><li style="flex:1">[</li><li style="flex:1"><em>F</em>(<em>T, V </em>)] contain the same information as the original </li></ul><p></p><p>one [<em>U</em>(<em>S, V </em>)]. </p><p>From the practical viewpoint, it is more important to </p><p>express the changes in the Entropy as a linear combi- </p><p>Analogous algebra reduces Eq. (9) to an expression for </p><p><em>H</em></p><p>(</p><p><em>S, P</em>), and Eq. (12) to an expression for </p><p><em>G</em><br>(<em>T, P</em>). For </p><p>nation of the changes in its natural variables, </p><p><em>S</em></p><p>and </p><p><em>P</em></p><p>.</p><p>a more detailed presentation, see Zia et al. [6]. </p><p>With this goal in mind, we substitute the right-hand side of Eq. (2) for <em>dU </em>on the right-hand side of Eq. (8), which </p><p>yields the expression </p><p>The left-hand column of Table 1 collects the central </p><p>results inSec. 2.1. For each thermodynamic potential </p><p><em>U</em></p><p>,</p><p><em>F</em></p><p>,</p><p><em>H</em></p><p>, and </p><p><em>G</em></p><p>, the right-hand column presents the expres- </p><p>sions for the two conjugate variables directly obtained </p><p>from Eqs. (2), (7), (10), and (13), respectively. </p><p><em>dH </em>= <em>T d S </em>+ <em>V dP. </em></p><p>(10) </p><p>Experimentalists find Eq. (10) very convenient. Work- </p><p>ing at fixed pressure, they only have to measure the heat </p><p><strong>3. Multiplicity of the thermodynamic potentials </strong></p><p><em>dQ </em></p><p>=</p><p><em>T d S </em>that is exchanged with the environment to </p><p>determine the change in Enthalpy. </p><p>Finally, to determine the Gibbs Free Energy </p><p><em>G</em><br>(<em>T, P</em>), </p><p>Equation (2) covers systems with only two degrees of </p><p>freedom. It suits the gas in our cylinder well, which can </p><p>be described by two independent intensive variables: the </p><p>we add </p><p><em>d</em></p><p>(</p><p><em>PV </em>) to and subtract </p><p><em>d</em><br>(<em>T S</em>) from the right-hand </p><p>side of Eq. (2): </p><p>temperature </p><p><em>T</em></p><p>and pressure </p><p>most general situation. </p><p><em>P</em></p><p>. This, however, is not the </p><p><em>dG </em>= <em>dU </em>− <em>d</em>(<em>T S</em>) + <em>d</em>(<em>P V </em>)<em>, </em></p><p>which shows that <br>(11) (12) </p><p>Consider, for instance, instead of the gas in the cylinder, </p><p>a stretchable wire. Its volume can be varied and hence </p><p><em>G </em>= <em>U </em>− <em>T S </em>+ <em>P V. </em></p><p>defines an additional degree of freedom. Let </p><p><em>X</em></p><p>=</p><p><em>L </em>− <em>L </em></p><p>0</p><p></p><ul style="display: flex;"><li style="flex:1"><a href="/goto?url=http://dx.doi.org/10.1590/1806-9126-RBEF-2019-0127" target="_blank">DOI: http://dx.doi.org/10.1590/1806-9126-RBEF-2019-0127 </a></li><li style="flex:1">Revista Brasileira de Ensino de Física, vol. 42, e20190127, 2020 </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">e20190127-4 </li><li style="flex:1">Thermodynamic Potentials and Natural Variables </li></ul><p></p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages10 Page
-
File Size-