Curriculum Vitae Education Professional Positions Honors And

Curriculum Vitae Education Professional Positions Honors And

<p>Curriculum Vitae </p><p>Xiuxiong Chen </p><p>Education </p><p>• PhD., Pure Mathematics, University of Pennsylvania, 1994. • M.A., Graduate School of Academic Sinica, Beijing, China, 1989. • B.A., Pure Mathematics, University of Science and Technology of China, Hefei, China, 1987. </p><p>Professional positions </p><p>• 09/2010–, Professor, Stony Brook University. • 01/2007–06/2007, Visiting Professor, Princeton University. • 2005–2010, Professor, University of Wisconsin at Madison. • 2002-2005, Associate Professor, University of Wisconsin at Madison. • 1998-2002, Assistant Professor, Princeton University. • 1996-1998, NSF Post-doctoral Fellow, Stanford University. • 1994-1996, Instructor, McMaster University, Canada. </p><p>Honors and Awards </p><p>• 1996-2000, National Science foundation postdoctoral Fellowship. • 08/2002, Invited address at International Congress of Mathematicians, Beijing, China. • 04/2005, Invited address at AMS regional meeting in Newark, Delware. • 04/09/2010-04/11/2010, Invited lecture at 25th Geometry Festival, Courant Institute. • 2015, Fellow of the American Mathematical Society. • 2016, Simons Fellow in Mathematics. • 2019, Veblen Prize in Geometry. • 2019, Simons Investigator Award. <br>Xiuxiong Chen </p><p>Curriculum vitae </p><p>PhD. Students and Theses Supervised/co-supervised </p><p>• Yingyi Wu (PhD., 2005, University of Science and Technology). Some problems on HCMU metrics in Riemannian Surfaces. </p><p>• Brian Weber (PhD., 2007, UW-Madison), Moduli Spaces of Extremal Ka¨hler Manifolds. • Weiyong He (PhD., 2007, UW-Madison), Extremal Metrics, The Stability Conjecture and the Calabi Flow. </p><p>• Haozhao Li (PhD, 2007, Peking University), Energy Functionals and Ka¨hler-Ricci Flow. • Bing Wang (PhD., 2008, UW-Madison), On the Extension of the Ricci flow. • Yudong Tang (PhD., 2008, UW-Madison), Geodesic Rays and Test Configurations. • Weidong Yin(PhD., 2009, UW-Madison), Weak Solution of Yang-Mills Flow in Dimension N?4. • Song Sun (PhD., 2010, UW-Madison), Kempf-Ness theorem and uniqueness of extremal metrics. • Simone Calamai (PhD., 2010, Universita` degli Studi di Firenze), The Calabi’s Metric for the Space of Ka¨hler Metrics. </p><p>• Hongnian Huang, (PhD., 2010, UW-Madison), Calabi Flow on Toric Variety. • Kai Zheng (PhD., 2010, Chinese Academy of Science), The pseudo-Calabi flow. • Yajun Yan (PhD., 2010, University of Science and Technology of China), Existence and Uniqueness of Ricci Flow on Surfaces with Initial Curvature Unbounded From Below. </p><p>• Yuanqi Wang (PhD., 2011, UW-Madison), On the Ricci flows and Ricci solitons. • Fang Yuan (PhD., 2012, UW-Madison), The Weak Compactness of Ricci Flow with Ricci Curvature <br>Bounded from Below. </p><p>• Xiaojie Wang (PhD., 2014, Stony Brook University), Uniqueness of Ricci Flow Solution on Noncompact Manifolds and Integral Scalar Curvature Bound. </p><p>• Long Li (PhD., 2014, Stony Brook University), On the uniqueness of singular Ka¨hler Einstein metrics. </p><p>• Seyed Ali Aleyasin (PhD., 2014, Stony Brook University), Space of Ka¨hler metrics on singular and non-compact manifolds. </p><p>• Yongqiang Liu (PhD., 2015, University of Science and Technology of China), Divisibility results for Alexander type invariants of hypersurface complements. </p><p>• Chengjian Yao (PhD., 2015, Stony Brook University), Conical Ka¨hler-Einstein Metrics and Its <br>Applications. </p><p>• Yu Zeng (PhD., 2016, Stony Brook University), Deformations of twisted cscK metrics. • Robin Sebastian Krom (Ph.D., 2016, ETH Zu¨rich), The Donaldson Geometric Flow • Gao Chen (PhD., 2017, Stony Brook University), Classification of gravitational instantons with faster than quadratic curvature decay. </p><p>2<br>Xiuxiong Chen </p><p>Curriculum vitae </p><p>• Shaosai Huang (PhD., 2018, Stony Brook University), On the collapsing and convergence of Ricci flows and solitons. </p><p>• Selin Taskent (PhD., 2019, Stony Brook University), Rotationally symmetric Kahler metrics with extremal conditon. </p><p>• Fangyu Zou (PhD., 2019, Stony Brook University), Monge-Ampere equation on the complement of a divisor and On the Chern-Yamabe flow. </p><p>• Current students: Jean-Franc¸ois Arbour (Expected 2020), Jiasheng Teh (Expected 2021), Jae Ho <br>Cho (Expected 2021) </p><p>Postdocs Supervised or Co-Supervised </p><p>• 2003-2006, Lijing Wang (UW-Madison) • 2004-2007, Aobing Li (UW-Madison) • 2013-2017, Lorenzo Foscolo (Stony Brook University) • 2014-2017, Henri Guenancia (Stony Brook University) • 2014-2017, Alex Waldron (SCGP) • 2016-present, Ruobing Zhang. (Stony Brook University) • 2017-present, Yu Li, (Stony Brook University) • 2018-present, Jingrui Cheng, (Stony Brook University) </p><p>NSF grants </p><p>• NSF Grant DMS 1914719 (2019-2022), Complex Monge Ampere equation and Calabi flow problems. </p><p>• NSF Grant DMS-1603351 (2015-2017), Conference on Differential Geometry. • NSF Grant DMS-1418942 (2013-2015), Conference on Geometric Analysis and Relativity. • NSF Grant DMS-1515795 (2015-2019), Complex Monge-Ampe`re equation, the Ka¨hler-Einstein <br>Problem and constant scalar curvature metric problems </p><p>• NSF Grant DMS-1211652 (2012-2015), Extremal Ka¨hler metrics, the Ka¨hler Ricci flow and the <br>Calabi flow. </p><p>• NSF Grant DMS-0907778 (2009-2012), Extremal Ka¨hler Metrics. • NSF Grant DMS-0406346 (2004-2009), Extremal Ka¨hler Metrics. and Geometric Flow Equations. • NSF Grant DMS-0110321 (2001-2004), The Ka¨hler Ricci Flow and the Extremal Ka¨hler Metric. • NSF Grant DMS-0302452, Great Lakes Geometry Conference. • NSF-AMS travel support for International Congress of Mathematicians 2002, Beijing, China. • NSF Post-doctoral Fellowship DMS-9627404 (1996-2000). </p><p>3<br>Xiuxiong Chen </p><p>Curriculum vitae </p><p>Selected Conferences Co-Organized </p><p>• Geometry of Manifolds (October 23-October 27, 2017), SCGP. • Conference on Differential Geometry (July 5- July 9, 2016), Center De Recherches Mathe´matiques. • Geometric flow program (October 13-December 19, 2014), SCGP. • Geometric Analysis and Relativity (July 6- July 10, 2014), USTC. • Summer School in Ka¨hler Geometry, June 24- July 5, 2012, SCGP. • International conference on Nonlinear PDE and applications (August 1- August 6, 2011), USTC. • Annual Summer School on Geometric Analysis (2003-present), USTC. • Mini Workshop on Algebraic Geometry (June 17-July 18, 2011), • Singularity Theory conference, ( July 25 - July 31, 2011), USTC. • Workshop on Extremal Ka¨hler Metrics (March 21- March 25, 2011), SCGP. • Differentialgeometrie im Groβen (July 3- July 9, 2011), Oberwolfach. • Pacific Rim Complex geometry Conference (2006 - 2017). • Workshop on complex geometry analysis (June 28-July 3, 2009), Banff, Canada. • School of Differential geometry ( June 8 - June 29, 2008), ICTP, Trieste, Italy. • Summer school: June 8 - June 20, Conference: June 21 - June 29, 2008, USTC. • Great Lake geometry conference (April 10 - April 11, 2010), Madison. </p><p>Publications </p><p>1. On the existence of constant scalar curvature Ka¨hler metric:&nbsp;a new perspective, Ann.&nbsp;Math. </p><p>Que´bec 42, (2018), no. 2, pp 169-189. </p><p>2. Ka¨hler-Ricci flow, Ka¨hler-Einstein metric, and K-stability (co-authors: S. Sun and B. Wang), Ge- </p><p>ometry &amp; Topology 22 (2018), no. 6, 3145-3173. </p><p>3. Gravitational instantons with faster than quadratic curvature decay (II) (co-author: G. Chen), J. </p><p><a href="/goto?url=https://doi.org/10.1515/crelle-2017-0026" target="_blank">Reine Angew. Math. 726 (2018), https://doi.org/10.1515/crelle-2017-0026. </a></p><p>4. Space of Ricci flows (II)–part A: moduli of singular Calabi-Yau spaces (co-author: B. Wang), Forum </p><p>Math. Sigma (2017), Vol. 5, e32, 103 pp, doi:10.1017/fms.2017.28. </p><p>5. On the regularity problem of complex Monge-Ampe`re equations with conical singularities (co- </p><p>author: Y. Q. Wang), Ann. Inst. Fourier (Grenoble) 67 (2017), no. 3, 969-1003. </p><p>6. A note on Ricci flow with Ricci curvature bounded below (co-author: F.&nbsp;Yuan), J. Reine Angew. </p><p>Math. 726 (2017), 29-44. </p><p>7. Approximation of weak geodesics and subharmonicity of Mabuchi energy (co-authors: L.&nbsp;Li, M. </p><p>Pa˘un), Calc. Var. Partial Differential Equations 55 (2016), no. 4, Art. 106, 28 pp. <br>4<br>Xiuxiong Chen </p><p>Curriculum vitae <br>8. The interior regularity of the Calabi flow on a toric surface (co-authors: H. N. Huang, L. Sheng), </p><p>Calc. Var. Partial Differential Equations 55 (2016), no. 4, Art. 106, 28 pp. </p><p>9. C<sup style="top: -0.3299em;">2,α</sup>-estimate for Monge-Ampe`re equations with Ho¨lder-continuous right hand side (co-author: Y. </p><p>Q. Wang), Ann. Global Anal. Geom. 49 (2016), no. 2, 195-204. </p><p>10. Bessel functions, heat kernel and the conical Ka¨hler-Ricci flow (co-author: Y. Q. Wang), J. Funct. </p><p>Anal. 269 (2015), no. 2, 551-632. </p><p>11. On four-dimensional anti-self-dual gradient Ricci solitons (co-author: Y. Q. Wang), J. Geom. Anal. </p><p>25 (2015), no. 2, 1335-1343. </p><p>12. Ka¨hler-Einstein metrics on Fano manifolds. III: Limits as cone angle approaches 2π and comple- </p><p>tion of the main proof (co-authors: S. K. Donaldson, S. Sun), J. Amer. Math. Soc. 28 (2015), no. 1, 235-278. </p><p>13. Ka¨hler-Einstein metrics on Fano manifolds. II: Limits with cone angle less than 2π (co-authors: S. </p><p>K. Donaldson, S. Sun), J. Amer. Math. Soc. 28 (2015), no. 1, 199-234. </p><p>14. Ka¨hler-Einstein metrics on Fano manifolds.&nbsp;I: Approximation of metrics with cone singularities </p><p>(co-authors: S. K. Donaldson, S. Sun), J. Amer. Math. Soc. 28 (2015), no. 1, 183-197. </p><p>15. Calabi flow, geodesic rays, and uniqueness of constant scalar curvature Ka¨hler metrics (co-author: </p><p>S. Sun), Ann. of Math. (2) 180 (2014), no. 2, 407-454. </p><p>16. Integral bounds on curvature and Gromov-Hausdorff limits (co-author: S. K. Donaldson), J. Topol. </p><p>7 (2014), no. 2, 543-556. <br>17. Ka¨hler-Einstein metrics and stability (co-authors: S. K. Donaldson, S. Sun), Int. Math. Res. Not. <br>2014, no. 8, 2119-2125. </p><p>18. Liouville energy on a topological two sphere (co-author: M.&nbsp;J. Zhu), Commun.&nbsp;Math. Stat. 1 <br>(2013), no. 4, 369-385. </p><p>19. On the conditions to extend Ricci flow (III) (co-author: B. Wang), Int. Math. Res. Not. 2013, no. <br>10, 2349-2367. </p><p>20. Volume estimates for Ka¨hler-Einstein metrics and rigidity of complex structures (co-author: S. K. </p><p>Donaldson), J. Differential Geom.93 (2013), no. 2, 191-201. </p><p>21. Volume estimates for Ka¨hler-Einstein metrics: the three-dimensional case (co-author: S. K. Don- </p><p>aldson), J. Differential Geom.93 (2013), no. 2, 175-189. <br>22. The pseudo-Calabi flow (co-author: K. Zheng), J. Reine Angew. Math. 674 (2013), 195-251. 23. Space of Ka¨hler metrics (V): Ka¨hler quantization (co-author: S. Sun), Metric and differential geometry, 19-41, Progr. Math., 297, Birkha¨user/Springer, Basel, 2012. </p><p>24. The complex Monge-Ampe`re equation on compact Ka¨hler manifolds (co-author: W. Y. He), Math. </p><p>Ann. 354 (2012), no. 4, 1583-1600. <br>25. The Ka¨hler Ricci flow on Fano manifolds (I) (co-author: B. Wang), J. Eur. Math. Soc. (JEMS) 14 <br>(2012), no. 6, 2001-2038. </p><p>5<br>Xiuxiong Chen </p><p>Curriculum vitae </p><p>26. Space of Ricci flows I (co-author: B. Wang), Comm. Pure Appl. Math. 65 (2012), no. 10, 1399- <br>1457. </p><p>27. The Ka¨hler Ricci flow on Fano surfaces (I) (co-author: B. Wang), Math. Z. 270 (2012), no. 1-2, <br>577-587. </p><p>28. The space of volume forms (co-author: W. Y. He), Int. Math. Res. Not. 2011, no. 5, 967-1009. 29. On the weak Ka¨hler-Ricci flow (co-authors: G.&nbsp;Tian, Z. Zhang), Trans.&nbsp;Amer. Math. Soc. 363 <br>(2011), no. 6, 2849-2863. </p><p>n</p><p>2</p><p>30. Moduli spaces of critical Riemannian metrics with L norm curvature bounds (co-author: B. We- </p><p>ber), Adv. Math. 226 (2011), no. 2, 1307-1330. <br>31. The Calabi flow on toric Fano surfaces (co-author: W. Y. He), Math. Res. Lett. 17 (2010), no. 2, <br>231-241. </p><p>32. Remarks on Ka¨hler Ricci flow (co-author: B. Wang), J. Geom. Anal. 20 (2010), no. 2, 335-353. 33. Stability of Ka¨hler-Ricci flow (co-author: H. Z. Li), J. Geom. Anal. 20 (2010), no. 2, 306-334. 34. A note on Ka¨hler-Ricci soliton (co-authors: S. Sun, G. Tian), Int. Math. Res. Not. 2009, no. 17, <br>3328-3336. </p><p>35. Ka¨hler-Ricci flow with small initial energy (co-authors: H. Z. Li, B. Wang), Geom.&nbsp;Funct. Anal. <br>18 (2009), no. 5, 1525-1563. </p><p>36. Space of Ka¨hler metrics.&nbsp;III — On the lower bound of the Calabi energy and geodesic distance, </p><p>Invent. Math. 175 (2009), no. 3, 453-503. <br>37. Test configuration and geodesic rays (co-author: Y.&nbsp;D. Tang), Ge´ome´trie diffe´rentielle, physique mathe´matique, mathe´matiques et socie´te´. I. Aste´risque No. 321 (2008), 139-167. </p><p>38. The Ka¨hler-Ricci flow on Ka¨hler manifolds with 2-non-negative traceless bisectional curvature </p><p>operator (co-author: H. Z. Li), Chin. Ann. Math. Ser. B 29 (2008), no. 5, 543-556. </p><p>39. Geometry of Ka¨hler metrics and foliations by holomorphic discs (co-author: G. Tian), Publ. Math. </p><p>Inst. Hautes Etudes Sci. no. 107 (2008), 1-107. <br>40. On conformally Ka¨hler, Einstein manifolds (co-authors: C. Lebrun, B. Weber), J. Amer. Math. Soc. <br>21 (2008), no. 4, 1137-1168. </p><p>41. On the Calabi flow (co-author: W. Y. He), Amer. J. Math. 130 (2008), no. 2, 539-570. </p><p>42. On Ka¨hler manifolds with positive orthogonal bisectional curvature, Adv.&nbsp;Math. 215&nbsp;(2007), no. </p><p>2, 427-445. </p><p>43. Ricci flow on surfaces with degenerate initial metrics (co-author: W. Y. Ding), J. Partial Differential </p><p>Equations 20 (2007), no. 3, 193-202. </p><p>44. Singular angles of weak limiting metrics under certain integral curvature bounds (co-authors: Q. </p><p>Chen, W. Y. He), Pacific J. Math. 231 (2007), no. 1, 35-49. </p><p>45. A note on uniformization of Riemann surfaces by Ricci flow (co-authors: P.&nbsp;Lu, G. Tian), Proc. </p><p>Amer. Math. Soc. 134 (2006), no. 11, 3391-3393. <br>6<br>Xiuxiong Chen </p><p>Curriculum vitae </p><p>46. Ricci flow on Ka¨hler-Einstein manifolds (co-author: G. Tian), Duke Math.&nbsp;J. 131 (2006), no.&nbsp;1, <br>17-73. </p><p>47. On the lower bound of energy functional E<sub style="top: 0.1363em;">1 </sub>(I) — A stability theorem on the Ka¨hler Ricci flow, J. </p><p>Geom. Anal. 16 (2006), no. 1, 23-38. <br>48. The structure of HCMU metric in a K-surface (co-authors: Q. Chen, Y. Y. Wu), Int.&nbsp;Math. Res. <br>Not. 2005, no. 16, 941-958. </p><p>49. Partial regularity for homogeneous complex Monge-Ampe`re equations (co-author: G. Tian), C. R. </p><p>Math. Acad. Sci. Paris 340 (2005), no. 5, 337-340. <br>50. Uniqueness of extremal Ka¨hler metrics (co-author: G.&nbsp;Tian), C. R. Math.&nbsp;Acad. Sci. Paris&nbsp;340 <br>(2005), no. 4, 287-290. </p><p>51. A new parabolic flow in Ka¨hler manifolds, Comm. Anal. Geom. 12 (2004), no. 4, 837-852. 52. The space of Ka¨hler metrics II (co-author: E. Calabi), J. Differential Geom.61 (2002), no. 2, 173- <br>193. </p><p>53. Recent progress in Ka¨hler geometry, Proceedings of the International Congress of Mathematicians, <br>Vol. II (Beijing, 2002), 273-282, Higher Ed. Press, Beijing, 2002. </p><p>54. Ricci flow on Ka¨hler-Einstein surfaces (co-author: G.&nbsp;Tian), Invent.&nbsp;Math. 147&nbsp;(2002), no.&nbsp;3, <br>487-544. </p><p>55. Calabi flow in Riemann surfaces revisited: a new point of view, Int. Math. Res. Not. 2001, no. 6, </p><p>275-297. <br>56. Ricci flow on Ka¨hler manifolds (co-author: G.&nbsp;Tian), C. R. Acad.&nbsp;Sci. Paris&nbsp;Se´r. I&nbsp;Math. 332 <br>(2001), no. 3, 245-248. </p><p>57. Existence of extremal metrics on almost homogeneous manifolds of cohomogeneity one. Loo-Keng <br>Hua: a great mathematician of the twentieth century (co-author: D. Guan), Asian J. Math. 4 (2000), </p><p>no. 4, 817-829. <br>58. The space of Ka¨hler metrics, J. Differential Geom.56 (2000), no. 2, 189-234. </p><p>59. On the lower bound of the Mabuchi energy and its application, Int. Math. Res. Not. 2000, no. 12, </p><p>607-623. </p><p>60. Obstruction to the existence of metric whose curvature has umbilical Hessian in a K-surface, </p><p>Comm. Anal. Geom. 8 (2000), no. 2, 267-299. <br>61. Extremal Hermitian metrics on Riemann surfaces, Calc.&nbsp;Var. Partial&nbsp;Differential Equations 8 <br>(1999), no. 3, 191-232. </p><p>62. Remarks on the existence of branch bubbles on the blowup analysis of equation −∆u = e<sup style="top: -0.3299em;">2u </sup>in </p><p>dimension two, Comm. Anal. Geom. 7 (1999), no. 2, 295-302. <br>63. Extremal Hermitian metrics on Riemannian surfaces, Int. Math. Res. Not. 1998, no. 15, 781-797. </p><p>64. Weak limits of Riemannian metrics in surfaces with integral curvature bound, Calc.&nbsp;Var. Partial </p><p>Differential Equations 6 (1998), no. 3, 189-226. <br>7<br>Xiuxiong Chen </p><p>Curriculum vitae <br>65. Extremal Hermitian metrics with curvature distortion in a Riemann surface, Thesis (PhD.)-University </p><p>of Pennsylvania. 1994. </p><p>66. Deformation of surfaces preserving principal curvatures (co-author: C. K. Peng), Differential ge- </p><p>ometry and topology (Tianjin, 1986-87), 63-70, Lecture Notes in Math., 1369, Springer, Berlin, 1989. </p><p>Preprints </p><p>1. On the constant scalar curvature Ka¨hler metrics, apriori estimates (co-author: J. R. Cheng), preprint, </p><p>arXiv:1712.06697. </p><p>2. On the constant scalar curvature Ka¨hler metrics, existence results (co-author: J. R. Cheng), preprint, </p><p>arXiv:1801.00656. </p><p>3. On the constant scalar curvature Ka¨hler metrics, general automorphism group (co-author: J.&nbsp;R. </p><p>Cheng), preprint, arXiv:1801.05907. </p><p>4. Geodesically Convexity of Small Neighborhood in Space of Ka¨hler Potentials (co-authors: M. Feld- </p><p>man and J. C. Hu), preprint, arXiv:1805.02373. </p><p>5. Gravitational instantons with faster than quadratic curvature decay (I) (co-author: G.&nbsp;Chen), </p><p>preprint, arXiv:1505.01790. </p><p>6. Gravitational instantons with faster than quadratic curvature decay (III) (co-author: G.&nbsp;Chen), </p><p>preprint, arXiv:1603.08465. <br>7. On deformation of extremal metrics (co-authors: M. Pa˘un and Y. Zeng), preprint, arXiv:1506.01290. </p><p>8</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    8 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us