The ABC's of Calculus

The ABC's of Calculus

Contents iii v Preface to the e-text edition vii 1 Functions and Their Properties 1 1.1TheMeaningofaFunction..................... 1 1.2 Function Values and the Box Method . 5 1.3TheAbsoluteValueofaFunction.................. 12 1.4 A Quick Review of Inequalities . 21 1.4.1 The triangle inequalities . 23 1.5ChapterExercises.......................... 30 1.6 Using Computer Algebra Systems (CAS), . 31 2 Limits and Continuity 33 2.1One-SidedLimitsofFunctions................... 35 2.2Two-SidedLimitsandContinuity.................. 40 2.3 Important Theorems About Continuous Functions . 59 2.4 Evaluating Limits at Infinity . 63 2.5HowtoGuessaLimit........................ 66 2.6ChapterExercises.......................... 76 3 The Derivative of a Function 79 3.1Motivation.............................. 80 3.2WorkingwithDerivatives...................... 89 3.3TheChainRule............................ 95 3.4 Implicit Functions and Their Derivatives . 108 3.5 Derivatives of TrigonometricSAMPLE Functions . 113 3.6ImportantResultsAboutDerivatives................121 3.7InverseFunctions...........................128 3.8 Inverse Trigonometric Functions . 136 3.9 Derivatives of Inverse Trigonometric Functions . 140 3.10RelatingRatesofChange......................143 ix www.math.carleton.ca/~amingare/calculus/cal104.html Protected by Copyright, - DO NOT COPY x CONTENTS 3.11 Newton’s Method for Calculating Roots . 151 3.12L’Hospital’sRule...........................161 3.13ChapterExercises..........................173 3.14ChallengeQuestions.........................174 3.15 Using Computer Algebra Systems . 175 4 Exponentials and Logarithms 177 4.1 Exponential Functions and Their Logarithms . 178 4.2 Euler’s Number, e = 2.718281828 ... 184 4.3 Euler’s Exponential Function and the Natural Logarithm . 189 4.4 Derivative of the Natural Logarithm . 193 4.5 Differentiation Formulae for General Exponential Functions . 196 4.6 Differentiation Formulae for General Logarithmic Functions . 201 4.7Applications..............................204 4.8ChapterExercises..........................210 4.9UsingComputerAlgebraSystems..................211 5 Curve Sketching 213 5.1 Solving Polynomial Inequalities . 213 5.2 Solving Rational Function Inequalities . 225 5.3GraphingTechniques.........................232 5.4 Application of Derivatives to Business and Economics . 256 5.5 Single variable optimization problems . 258 5.6ChapterExercises..........................259 6 Integration 261 6.1 Antiderivatives and the Indefinite Integral . 262 6.2DefiniteIntegrals...........................277 6.3TheSummationConvention.....................286 6.4 Area and the Riemann Integral . 291 6.5ChapterExercises..........................304 6.6UsingComputerAlgebraSystems..................306 7 Techniques of Integration 309 7.1TrigonometricIdentities.......................309 7.2 The Substitution Rule . 311 7.3IntegrationbyParts.........................323 7.3.1 The Product of a Polynomial and a Sine or Cosine . 328 7.3.2 The Product of a Polynomial and an Exponential . 331 7.3.3 The Product of a Polynomial and a Logarithm . 334 SAMPLE7.3.4 The Product of an Exponential and a Sine or Cosine . 337 7.4PartialFractions...........................346 7.4.1 Review of Long Division of Polynomials . 347 7.4.2 The Integration of Partial Fractions . 350 7.5ProductsofTrigonometricFunctions................365 7.5.1 ProductsofSinesandCosines................365 7.5.2 FourierCoefficients......................374 7.5.3 ProductsofSecantsandTangents.............378 7.6 Trigonometric Substitutions . 386 7.6.1 Completing the Square in a Quadratic (Review) . 386 7.6.2 Trigonometric Substitutions . 390 7.7 Numerical Integration . 400 7.7.1 TheTrapezoidalRule....................401 7.7.2 Simpson’s Rule for n Even.................408 7.8ImproperIntegrals..........................414 www.math.carleton.ca/~amingare/calculus/cal104.html Protected by Copyright, - DO NOT COPY CONTENTS xi 7.9 Rationalizing Substitutions . 429 7.9.1 Integrating rational functions of trigonometric expressions 432 7.10ChapterExercises..........................437 7.11UsingComputerAlgebraSystems..................443 8 Applications of the Integral 445 8.1Motivation..............................445 8.2FindingtheAreaBetweenTwoCurves...............448 8.3 The Volume of a Solid of Revolution . 464 8.4Measuringthelengthofacurve...................477 8.5MomentsandCentersofMass....................489 8.6ChapterExercises..........................502 8.7UsingComputerAlgebraSystems..................502 9 Simple Differential Equations 505 9.1WhyStudyDifferentialEquations?.................505 9.2 First-order Separable Equations . 512 9.3LawsofGrowthandDecay.....................518 9.4UsingComputerAlgebraSystems..................525 10 Multivariable Optimization Techniques 527 10.1FunctionsofMoreThanOneVariable...............527 10.2Continuity...............................528 10.2.1Discontinuityatapoint...................529 10.3PartialDerivatives..........................531 10.4 Higher Order Partial Derivatives . 533 10.5 The Chain Rule for Partial Derivatives . 535 10.6 Extrema of Functions of Two Variables . 540 10.6.1MaximaandMinima.....................540 10.6.2 The method of Lagrange multipliers . 544 10.7ChapterExercises..........................551 11 Advanced Topics 553 11.1 Infinite Sequences . 553 11.2 Sequences with Infinite Limits . 560 11.3LimitsfromtheRight........................563 11.4LimitsfromtheLeft.........................569 11.5Summary...............................575 11.6Continuity...............................576 11.7 Limits of Functions at Infinity . 578 11.8 Infinite Limits of FunctionsSAMPLE . 581 11.9TheEpsilon-DeltaMethodofProof.................585 12 Appendix A: Review of Exponents and Radicals 597 13 Appendix B: The Straight Line 603 14 Appendix C: A Quick Review of Trigonometry 609 14.1 The right-angled isosceles triangle (RT45) . 610 14.2TheRT30triangle..........................610 14.3 The basic trigonometric functions . 611 14.4Identities...............................613 14.4.1TheLawofSines.......................614 14.4.2TheLawofCosines.....................615 14.4.3 Identities for the sum and difference of angles . 616 www.math.carleton.ca/~amingare/calculus/cal104.html Protected by Copyright, - DO NOT COPY xii CONTENTS 15 Appendix D: The Natural Domain of a Function 623 Solutions Manual 627 1.1 .....................................627 1.2ExerciseSet1(page10).......................627 1.3ExerciseSet2(page19).......................627 1.4ExerciseSet3(page28).......................628 1.5 Chapter Exercises (page 30 ) . 629 Solutions 631 2.1ExerciseSet4(page39).......................631 2.2ExerciseSet5(page45).......................631 2.2ExerciseSet6(page49).......................631 2.2ExerciseSet7(page56).......................632 2.2ExerciseSet8(page57).......................632 2.3 .....................................633 2.4ExerciseSet9(page65).......................633 2.5 .....................................633 2.6ChapterExercises(page76).....................633 Solutions 635 3.1ExerciseSet10(page88)......................635 3.2ExerciseSet11(page93)......................635 3.3 Exercise Set 12 (page 105) . 636 3.4 Exercise Set 13 (page 112) . 637 3.5 Exercise Set 14 (page 119) . 637 3.6 Exercise Set 15 (page 127) . 637 3.7 Exercise Set 16 (page 134) . 639 3.8 Exercise Set 17 (page 139) . 639 3.9 Exercise Set 18 (page 142) . 639 3.10 Special Exercise Set (page 149) . 640 3.11 Exercise Set 19 (page 160) . 640 3.12 Exercise Set 20 (page 172) . 641 3.13 Chapter Exercises (page 173) . 641 Solutions 643 4.1 Exercise Set 21 (page 183) . 643 4.2 Exercise Set 22 (page 188) . 643 SAMPLE4.3 .....................................644 4.4 Exercise Set 23 (page 196) . 644 4.5 Exercise Set 24 (page 199) . 644 4.6 Exercise Set 25 (page 203) . 645 4.7 .....................................646 4.8 Chapter Exercises (page 210) . 646 Solutions 649 5.1 Exercise Set 26 (page 216) . 649 5.2 Exercise Set 27 (page 223) . 649 5.3 Exercise Set 28 (page 230) . 650 5.4 .....................................652 5.5 .....................................652 5.6 Single variable optimization problems (page 258) . 653 5.7 Chapter Exercises: Use Plotter (page 259) . 654 www.math.carleton.ca/~amingare/calculus/cal104.html Protected by Copyright, - DO NOT COPY CONTENTS xiii Solutions 657 6.1 Exercise Set 29 (page 275) . 657 6.2 Exercise Set 30 (page 289) . 657 6.3 Exercise Set 31 (page 284) . 659 6.4 .....................................660 6.5 Chapter Exercises (page 304) . 660 Solutions 665 7.1 .....................................665 7.2 Exercise Set 32 (page 321) . 665 7.3 Exercise Set 33 (page 345) . 666 7.4 .....................................667 7.4.1 Exercise Set 34 (page 349) . 667 7.4.2 Exercise Set 35 (page 364) . 668 7.5 .....................................670 7.5.1 Exercise Set 36 (page 373) . 670 7.5.2 Exercise Set 37 (page 385) . 671 7.6 .....................................672 7.6.1 Exercise Set 38 (page 390) . 672 7.6.2 Exercise Set 39 (page 398) . 673 7.7 .....................................675 7.7.1 ................................675 7.7.2 Exercise Set 40 (page 411) . 675 7.8 Exercise Set 41 (page 426) . 677 7.9 Chapter Exercises (page 437) . 678 Solutions 693 8.1 .....................................693 8.2 Exercise Set 42 (page 452) . 693 8.2.1 Exercise Set 43 (page 462) . 694 8.3 Exercise Set 44 (page 476) . 695 8.4 Exercise Set 45 (page 487) . 696 8.5 Exercise Set 46 (page 500) . 697 8.6 Chapter Exercises (page 502) . 698 Solutions

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    151 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us