Accelerated Failure-Time (AFT) Model ● Proportional Hazards Model ● Proportional Odds Model ● Model Comparison Using Akaikie Information Criterion (AIC)

Accelerated Failure-Time (AFT) Model ● Proportional Hazards Model ● Proportional Odds Model ● Model Comparison Using Akaikie Information Criterion (AIC)

Survival Analysis Math 434 – Fall 2011 Part III: Chap. 2.5,2.6 & 12 Jimin Ding Math Dept. www.math.wustl.edu/ jmding/math434/index.html Jimin Ding, October 4, 2011 Survival Analysis, Fall 2011 - p. 1/14 Parametric Models ● Outlines ● Exponential Distribution ● Weilbull Distribution ● Lognormal Distribution ● Gamma Distribution ● Log-logistic Distribution ● Gompertz Distribution ● Parametric Regression Parametric Models Models with Covariates ● Accelerated Failure-Time (AFT) Model ● Proportional Hazards Model ● Proportional Odds Model ● Model Comparison Using Akaikie Information Criterion (AIC) Jimin Ding, October 4, 2011 Survival Analysis, Fall 2011 - p. 2/14 Outlines Parametric Models ■ Exponential distribution ; ● Outlines exp(λ),λ> 0 ● Exponential Distribution ● Weilbull Distribution ● Lognormal Distribution ● Gamma Distribution ● Log-logistic Distribution ● Gompertz Distribution ● Parametric Regression Models with Covariates ● Accelerated Failure-Time (AFT) Model ● Proportional Hazards Model ● Proportional Odds Model ● Model Comparison Using Akaikie Information Criterion (AIC) Jimin Ding, October 4, 2011 Survival Analysis, Fall 2011 - p. 3/14 Outlines Parametric Models ■ Exponential distribution ; ● Outlines exp(λ),λ> 0 ● Exponential Distribution ■ ● Weilbull Distribution Weiblull distribution W eibull(λ, α),λ> 0; ● Lognormal Distribution ● Gamma Distribution ● Log-logistic Distribution ● Gompertz Distribution ● Parametric Regression Models with Covariates ● Accelerated Failure-Time (AFT) Model ● Proportional Hazards Model ● Proportional Odds Model ● Model Comparison Using Akaikie Information Criterion (AIC) Jimin Ding, October 4, 2011 Survival Analysis, Fall 2011 - p. 3/14 Outlines Parametric Models ■ Exponential distribution ; ● Outlines exp(λ),λ> 0 ● Exponential Distribution ■ ● Weilbull Distribution Weiblull distribution W eibull(λ, α),λ> 0; ● Lognormal Distribution ■ 2 ● Gamma Distribution Lognormal distribution logN(µ, σ ),σ> 0; ● Log-logistic Distribution ● Gompertz Distribution ● Parametric Regression Models with Covariates ● Accelerated Failure-Time (AFT) Model ● Proportional Hazards Model ● Proportional Odds Model ● Model Comparison Using Akaikie Information Criterion (AIC) Jimin Ding, October 4, 2011 Survival Analysis, Fall 2011 - p. 3/14 Outlines Parametric Models ■ Exponential distribution ; ● Outlines exp(λ),λ> 0 ● Exponential Distribution ■ ● Weilbull Distribution Weiblull distribution W eibull(λ, α),λ> 0; ● Lognormal Distribution ■ 2 ● Gamma Distribution Lognormal distribution logN(µ, σ ),σ> 0; ● Log-logistic Distribution ● Gompertz Distribution ■ Gamma distribution Gamma(λ, β),λ> 0; ● Parametric Regression Models with Covariates ● Accelerated Failure-Time (AFT) Model ● Proportional Hazards Model ● Proportional Odds Model ● Model Comparison Using Akaikie Information Criterion (AIC) Jimin Ding, October 4, 2011 Survival Analysis, Fall 2011 - p. 3/14 Outlines Parametric Models ■ Exponential distribution ; ● Outlines exp(λ),λ> 0 ● Exponential Distribution ■ ● Weilbull Distribution Weiblull distribution W eibull(λ, α),λ> 0; ● Lognormal Distribution ■ 2 ● Gamma Distribution Lognormal distribution logN(µ, σ ),σ> 0; ● Log-logistic Distribution ● Gompertz Distribution ■ Gamma distribution Gamma(λ, β),λ> 0; ● Parametric Regression Models with Covariates ■ ● Accelerated Failure-Time Log-logistic distribution loglogit(λ, α),λ> 0; (AFT) Model ● Proportional Hazards Model ● Proportional Odds Model ● Model Comparison Using Akaikie Information Criterion (AIC) Jimin Ding, October 4, 2011 Survival Analysis, Fall 2011 - p. 3/14 Outlines Parametric Models ■ Exponential distribution ; ● Outlines exp(λ),λ> 0 ● Exponential Distribution ■ ● Weilbull Distribution Weiblull distribution W eibull(λ, α),λ> 0; ● Lognormal Distribution ■ 2 ● Gamma Distribution Lognormal distribution logN(µ, σ ),σ> 0; ● Log-logistic Distribution ● Gompertz Distribution ■ Gamma distribution Gamma(λ, β),λ> 0; ● Parametric Regression Models with Covariates ■ ● Accelerated Failure-Time Log-logistic distribution loglogit(λ, α),λ> 0; (AFT) Model ● Proportional Hazards Model ■ * Gompertz distribution Gompertz(θ, α),α> 0. ● Proportional Odds Model ● Model Comparison Using Akaikie Information Criterion (AIC) Jimin Ding, October 4, 2011 Survival Analysis, Fall 2011 - p. 3/14 Outlines Parametric Models ■ Exponential distribution ; ● Outlines exp(λ),λ> 0 ● Exponential Distribution ■ ● Weilbull Distribution Weiblull distribution W eibull(λ, α),λ> 0; ● Lognormal Distribution ■ 2 ● Gamma Distribution Lognormal distribution logN(µ, σ ),σ> 0; ● Log-logistic Distribution ● Gompertz Distribution ■ Gamma distribution Gamma(λ, β),λ> 0; ● Parametric Regression Models with Covariates ■ ● Accelerated Failure-Time Log-logistic distribution loglogit(λ, α),λ> 0; (AFT) Model ● Proportional Hazards Model ■ * Gompertz distribution Gompertz(θ, α),α> 0. ● Proportional Odds Model ● Model Comparison Using Akaikie Information Criterion For each parametric model, we will discuss the distribution (AIC) properties and parameter estimation. Jimin Ding, October 4, 2011 Survival Analysis, Fall 2011 - p. 3/14 Exponential Distribution Parametric Models Survival ● Density Function Outlines Function ● Exponential Distribution ● Weilbull Distribution 1.0 2.0 lambda= 0.5 lambda= 0.5 ● Lognormal Distribution lambda= 1 lambda= 1 0.8 lambda= 2 lambda= 2 ● Gamma Distribution 1.5 ● Log-logistic Distribution 0.6 ● Gompertz Distribution 1.0 f(t) ● Parametric Regression S(t) 0.4 Models with Covariates ● Accelerated Failure-Time 0.5 (AFT) Model 0.2 ● Proportional Hazards Model ● Proportional Odds Model 0.0 0.0 ● Model Comparison Using 0 1 2 3 4 5 0 1 2 3 4 5 Akaikie Information Criterion (AIC) t t Hazard Function 2.5 lambda= 0.5 lambda= 1 2.0 lambda= 2 1.5 h(t) 1.0 0.5 0.0 0 1 2 3 4 5 t Jimin Ding, October 4, 2011 Survival Analysis, Fall 2011 - p. 4/14 Exponential Distribution Properties 4-1 Parameter Estimation in Exponential Model 4-2 Weilbull Distribution Parametric Models Extension of exponential distribution: ● Outlines ● Exponential Distribution ● Weilbull Distribution Survival Density ● Lognormal Distribution Function Function ● Gamma Distribution ● Log-logistic Distribution 1.0 2.0 ● Gompertz Distribution 0.8 ● Parametric Regression 1.5 Models with Covariates ● Accelerated Failure-Time 0.6 1.0 (AFT) Model f(t) S(t) ● Proportional Hazards Model 0.4 ● Proportional Odds Model 0.5 ● Model Comparison Using 0.2 Akaikie Information Criterion (AIC) 0.0 0.0 0 1 2 3 4 5 0 1 2 3 4 5 t t Hazard Function 2.0 1.5 lambda= 0.5 , alpha= 0.02 lambda= 0.5 , alpha= 1 lambda= 0.5 , alpha= 2 1.5 lambda= 1 , alpha= 0.02 1.0 lambda= 1 , alpha= 1 lambda= 1 , alpha= 2 1.0 0 f(t) lambda= 2 , alpha= 0.02 lambda= 2 , alpha= 1 0.5 lambda= 2 , alpha= 2 0.5 0.0 0.0 Jimin Ding, October 4, 2011 Survival Analysis, Fall 2011 - p. 5/14 0 1 2 3 4 5 0.0 0.2 0.4 0.6 0.8 1.0 t 0 Weilbull Distribution Properties 5-1 Parameter Estimation in Weilbull Model 5-2 Lognormal Distribution Parametric Models Exponential of normal distribution: ● Outlines ● Exponential Distribution ● Weilbull Distribution ● Lognormal Distribution Survival Function Density Function ● Gamma Distribution ● Log-logistic Distribution 1.0 2.0 ● Gompertz Distribution 0.8 ● Parametric Regression 1.5 Models with Covariates ● Accelerated Failure-Time 0.6 1.0 (AFT) Model f(t) S(t) ● Proportional Hazards Model 0.4 ● Proportional Odds Model 0.5 ● Model Comparison Using 0.2 Akaikie Information Criterion (AIC) 0.0 0.0 0 1 2 3 4 5 0 1 2 3 4 5 t t Hazard Function 5 1.5 mu= −1 , sigma= 0.1 mu= −1 , sigma= 1 4 mu= −1 , sigma= 2 mu= 0 , sigma= 0.1 1.0 mu= 0 , sigma= 1 3 mu= 0 , sigma= 2 0 f(t) mu= 1 , sigma= 0.1 2 mu= 1 , sigma= 1 0.5 mu= 1 , sigma= 2 1 0 0.0 Jimin Ding, October 4, 2011 Survival Analysis, Fall 2011 - p. 6/14 0 1 2 3 4 5 0.0 0.2 0.4 0.6 0.8 1.0 t 0 Lognormal Distribution Properties 6-1 Parameter Estimation in Lognormal Model 6-2 Gamma Distribution Parametric Models ● Outlines Survival Function Density Function ● Exponential Distribution ● Weilbull Distribution ● Lognormal Distribution ● Gamma Distribution ● Log-logistic Distribution ● Gompertz Distribution f(t) ● Parametric Regression S(t) Models with Covariates ● Accelerated Failure-Time (AFT) Model ● Proportional Hazards Model ● 0.0 0.5 1.0 1.5 2.0 Proportional Odds Model 0.0 0.2 0.4 0.6 0.8 1.0 ● Model Comparison Using 0 1 2 3 4 5 0 1 2 3 4 5 Akaikie Information Criterion (AIC) t t Hazard Function scale= 0.5 , shape= 0.5 scale= 0.5 , shape= 1 scale= 0.5 , shape= 2 scale= 1 , shape= 0.5 scale= 1 , shape= 1 scale= 1 , shape= 2 0 f(t) scale= 2 , shape= 0.5 scale= 2 , shape= 1 scale= 2 , shape= 2 0 1 2 3 4 0.0 0.5 1.0 1.5 0 1 2 3 4 5 0.0 0.2 0.4 0.6 0.8 1.0 t 0 Jimin Ding, October 4, 2011 Survival Analysis, Fall 2011 - p. 7/14 Gamma Distribution Properties 7-1 Parameter Estimation in Gamma Model 7-2 Log-logistic Distribution Parametric Models ● Outlines Survival Function Density Function ● Exponential Distribution ● Weilbull Distribution 1.0 2.0 ● Lognormal Distribution 0.8 ● Gamma Distribution 1.5 ● Log-logistic Distribution 0.6 ● Gompertz Distribution 1.0 f(t) ● Parametric Regression S(t) 0.4 Models with Covariates ● Accelerated Failure-Time 0.5 (AFT) Model 0.2 ● Proportional Hazards Model ● Proportional Odds Model 0.0 0.0 ● Model Comparison Using 0 1 2 3 4 5 0 1 2 3 4 5 Akaikie Information Criterion (AIC) t t Hazard Function 4 1.5 mu= −1 , sigma= 0.5 mu= −1 , sigma= 1 mu= −1 , sigma= 2 3 mu= 0 , sigma= 0.5 1.0 mu= 0 , sigma= 1 mu= 0 , sigma= 2 2 0 f(t) mu= 1 , sigma= 0.5 mu= 1 , sigma= 1 0.5 mu= 1 , sigma= 2 1 0

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    30 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us