Sports Analytics from a to Z

Sports Analytics from a to Z

i Table of Contents About Victor Holman .................................................................................................................................... 1 About This Book ............................................................................................................................................ 2 Introduction to Analytic Methods................................................................................................................. 3 Sports Analytics Maturity Model .................................................................................................................. 4 Sports Analytics Maturity Model Phases .................................................................................................. 4 Sports Analytics Key Success Areas ........................................................................................................... 5 Allocative and Dynamic Efficiency ................................................................................................................ 7 Optimal Strategy in Basketball .................................................................................................................. 7 Backwards Selection Regression ................................................................................................................... 9 Competition between Sports Hurts TV Ratings: How to Shift League Calendars to Optimize Viewership .................................................................................................................................................................. 9 Bayesian Generalized Linear Model ............................................................................................................ 11 Shrinkage Estimation of NFL Field Goal Success Probabilities ................................................................ 11 Bayesian Hierarchical Latent Variable Models ........................................................................................... 13 Eye on the Ball: The Relationship Between Sensorimotor Abilities and On-Field Performance in Professional Baseball .............................................................................................................................. 13 Bayesian Hierarchical Model....................................................................................................................... 15 Estimating an NBA Player's Impact on His Team's Chances of Winning ................................................. 15 Bayesian Model and Simple OLS Regression .............................................................................................. 17 Moral Hazard in Long-Term Guaranteed Contracts: Theory and Evidence from the NBA ..................... 17 Bayesian Multinomial Model ...................................................................................................................... 19 Exploring the Potential of the Plus/Minus in NCAA Women's Volleyball via the Recovery of Court Presence Information ............................................................................................................................. 19 Binary Logic Model ...................................................................................................................................... 21 Matchup Models for the Probability of a Ground and a Ground Ball Hit ............................................... 21 Bipartite Graph Algorithms ......................................................................................................................... 23 Player Centrality on NBA Teams ............................................................................................................. 23 Bland Altman Plot Analysis ......................................................................................................................... 25 Bland Altman Plot Analysis in Sports Analytics ....................................................................................... 25 Bonferroni Adjusted Comparisons .............................................................................................................. 27 A Closer Look at the Prevalence of Time Rule Violations and the Inter-Point Time in Men's Gland Slam Tennis ...................................................................................................................................................... 27 Bookmaker Consensus Model .................................................................................................................... 29 ii Searching for the GOAT of Tennis Win Prediction .................................................................................. 29 Bootstrap Simulation .................................................................................................................................. 31 Improving Fairness in Match Play Golf through Enhanced Handicap Allocation ................................... 31 Boruta Algorithm ........................................................................................................................................ 33 An Investigation of Three-Point Shooting through an Analysis of NBA Player Tracking Data ................ 33 Brownian Motion Process ........................................................................................................................... 35 The Implied Volatility of a Sports Game ................................................................................................. 35 Chapman- Kolmogorov Equations .............................................................................................................. 37 Evaluating NBA End-of-Game Decision-Making ..................................................................................... 37 Clustering .................................................................................................................................................... 39 Big 2's and Big 3's: Analyzing How a Team's Best Players Complement Each Other .............................. 39 Coaching Assistance Models ....................................................................................................................... 41 Coaching Assistance Models as a Method of Sports Analytics ............................................................... 41 Recognizing and Analyzing Ball Screen Defense in the NBA ................................................................... 42 Competitiveness Metrics ............................................................................................................................ 44 The Competitiveness of Games in Professional Sports Leagues ............................................................ 44 Computer Vision Techniques ...................................................................................................................... 45 Using Computer Vision and Machine Learning to Automatically Classify NFL Game Film and Develop a Player Tracking System ........................................................................................................................... 45 Conditional Probability ............................................................................................................................... 47 Applying Conditional Probability to Sports Analytics ............................................................................. 47 Conditional Random Field ........................................................................................................................... 48 "Quality vs. Quantity": Improved Shot Prediction in Soccer using Strategic Features from Spatiotemporal Data ............................................................................................................................... 48 Conservation of Runs Framework ............................................................................................................... 50 openWAR: An Open Source System for Evaluating Overall Player Performance in Major League Baseball ................................................................................................................................................... 50 Convex Hull ................................................................................................................................................. 52 Predicting Golf Scores at the Shot Level ................................................................................................. 52 Convolutional Neural Networks .................................................................................................................. 54 Mythbusting Set-Pieces in Soccer ........................................................................................................... 54 Cross-Validated Root-Mean-Squared Error ................................................................................................ 56 Improved NBA Adjusted +/- Using Regularization and Out-of-Sample Testing ...................................... 56 Data Science Methods ................................................................................................................................ 58 iii Data Science Methods in Sports Analytics .............................................................................................. 58 Data Tables.................................................................................................................................................. 60 The Effect of

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    309 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us